April 21, 2020  |  

The bracteatus pineapple genome and domestication of clonally propagated crops.

Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a ‘one-step operation’. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513?Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars ‘Smooth Cayenne’ and ‘Queen’ exhibited ancient and recent admixture, while ‘Singapore Spanish’ supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops.

April 21, 2020  |  

The red bayberry genome and genetic basis of sex determination.

Morella rubra, red bayberry, is an economically important fruit tree in south China. Here, we assembled the first high-quality genome for both a female and a male individual of red bayberry. The genome size was 313-Mb, and 90% sequences were assembled into eight pseudo chromosome molecules, with 32 493 predicted genes. By whole-genome comparison between the female and male and association analysis with sequences of bulked and individual DNA samples from female and male, a 59-Kb region determining female was identified and located on distal end of pseudochromosome 8, which contains abundant transposable element and seven putative genes, four of them are related to sex floral development. This 59-Kb female-specific region was likely to be derived from duplication and rearrangement of paralogous genes and retained non-recombinant in the female-specific region. Sex-specific molecular markers developed from candidate genes co-segregated with sex in a genetically diverse female and male germplasm. We propose sex determination follow the ZW model of female heterogamety. The genome sequence of red bayberry provides a valuable resource for plant sex chromosome evolution and also provides important insights for molecular biology, genetics and modern breeding in Myricaceae family. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

April 21, 2020  |  

Computational aspects underlying genome to phenome analysis in plants.

Recent advances in genomics technologies have greatly accelerated the progress in both fundamental plant science and applied breeding research. Concurrently, high-throughput plant phenotyping is becoming widely adopted in the plant community, promising to alleviate the phenotypic bottleneck. While these technological breakthroughs are significantly accelerating quantitative trait locus (QTL) and causal gene identification, challenges to enable even more sophisticated analyses remain. In particular, care needs to be taken to standardize, describe and conduct experiments robustly while relying on plant physiology expertise. In this article, we review the state of the art regarding genome assembly and the future potential of pangenomics in plant research. We also describe the necessity of standardizing and describing phenotypic studies using the Minimum Information About a Plant Phenotyping Experiment (MIAPPE) standard to enable the reuse and integration of phenotypic data. In addition, we show how deep phenotypic data might yield novel trait-trait correlations and review how to link phenotypic data to genomic data. Finally, we provide perspectives on the golden future of machine learning and their potential in linking phenotypes to genomic features. © 2018 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

April 21, 2020  |  

Comprehensive characterization of T-DNA integration induced chromosomal rearrangement in a birch T-DNA mutant.

Integration of T-DNA into plant genomes via Agrobacterium may interrupt gene structure and generate numerous mutants. The T-DNA caused mutants are valuable materials for understanding T-DNA integration model in plant research. T-DNA integration in plants is complex and still largely unknown. In this work, we reported that multiple T-DNA fragments caused chromosomal translocation and deletion in a birch (Betula platyphylla × B. pendula) T-DNA mutant yl.We performed PacBio genome resequencing for yl and the result revealed that two ends of a T-DNA can be integrated into plant genome independently because the two ends can be linked to different chromosomes and cause chromosomal translocation. We also found that these T-DNA were connected into tandem fragment regardless of direction before integrating into plant genome. In addition, the integration of T-DNA in yl genome also caused several chromosomal fragments deletion. We then summarized three cases for T-DNA integration model in the yl genome. (1) A T-DNA fragment is linked to the two ends of a double-stranded break (DSB); (2) Only one end of a T-DNA fragment is linked to a DSB; (3) A T-DNA fragment is linked to the ends of different DSBs. All the observations in the yl genome supported the DSB repair model.In this study, we showed a comprehensive genome analysis of a T-DNA mutant and provide a new insight into T-DNA integration in plants. These findings would be helpful for the analysis of T-DNA mutants with special phenotypes.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.