April 21, 2020  |  

Complete Genome of Bacillus velezensis CMT-6 and Comparative Genome Analysis Reveals Lipopeptide Diversity.

The complete genome sequence of Bacillus velezensis type strain CMT-6 is presented for the first time. A comparative analysis between the genome sequences of CMT-6 with the genome of Bacillus amyloliquefaciens DSM7T, B. velezensis FZB42, and Bacillus subtilis 168 revealed major differences in the lipopeptide synthesis genes. Of the above, only the CMT-6 strain possessed an integrated synthetase gene for synthesizing surfactin, iturin, and fengycin. However, CMT-6 shared 14, 12, and 10 other lipopeptide-producing genes with FZB42, DSM7T, and 168 respectively. The largest numbers of non-synonymous mutations were detected in 205 gene sequences that produced these three lipopeptides in CMT-6 and 168. Comparing CMT-6 with DSM7T, 58 non-synonymous mutations were detected in gene sequences that contributed to produce lipopeptides. In addition, InDels were identified in yczE and glnR genes. CMT-6 and FZB42 had the lowest number of non-synonymous mutations with 8 lipopeptide-related gene sequences. And InDels were identified in only yczE. The numbers of core genes, InDels, and non-synonymous mutations in genes were the main reasons for the differences in yield and variety of lipopeptides. These results will enrich the genomic resources available for B. velezensis and provide fundamental information to construct strains that can produce specific lipopeptides.


April 21, 2020  |  

Complete genome sequence of Bacillus velezensis JT3-1, a microbial germicide isolated from yak feces

Bacillus velezensis JT3-1 is a probiotic strain isolated from feces of the domestic yak (Bos grunniens) in the Gansu province of China. It has strong antagonistic activity against Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, Mannheimia haemolytica, Staphylococcus hominis, Clostridium perfringens, and Mycoplasma bovis. These properties have made the JT3-1 strain the focus of commercial interest. In this study, we describe the complete genome sequence of JT3-1, with a genome size of 3,929,799 bp, 3761 encoded genes and an average GC content of 46.50%. Whole genome sequencing of Bacillus velezensis JT3-1 will lay a good foundation for elucidation of the mechanisms of its antimicrobial activity, and for its future application.


April 21, 2020  |  

Genomic and Functional Characterization of the Endophytic Bacillus subtilis 7PJ-16 Strain, a Potential Biocontrol Agent of Mulberry Fruit Sclerotiniose.

Bacillus sp. 7PJ-16, an endophytic bacterium isolated from a healthy mulberry stem and previously identified as Bacillus tequilensis 7PJ-16, exhibits strong antifungal activity and has the capacity to promote plant growth. This strain was studied for its effectiveness as a biocontrol agent to reduce mulberry fruit sclerotiniose in the field and as a growth-promoting agent for mulberry in the greenhouse. In field studies, the cell suspension and supernatant of strain 7PJ-16 exhibited biocontrol efficacy and the lowest disease incidence was reduced down to only 0.80%. In greenhouse experiments, the cell suspension (1.0?×?106 and 1.0?×?105 CFU/mL) and the cell-free supernatant (100-fold and 1000-fold dilution) stimulated mulberry seed germination and promoted mulberry seedling growth. In addition, to accurately identify the 7PJ-16 strain and further explore the mechanisms of its antifungal and growth-promoting properties, the complete genome of this strain was sequenced and annotated. The 7PJ-16 genome is comprised of two circular plasmids and a 4,209,045-bp circular chromosome, containing 4492 protein-coding genes and 116 RNA genes. This strain was ultimately designed as Bacillus subtilis based on core genome sequence analyses using a phylogenomic approach. In this genome, we identified a series of gene clusters that function in the synthesis of non-ribosomal peptides (surfactin, fengycin, bacillibactin, and bacilysin) as well as the ribosome-dependent synthesis of tasA and bacteriocins (subtilin, subtilosin A), which are responsible for the biosynthesis of numerous antimicrobial metabolites. Additionally, several genes with function that promote plant growth, such as indole-3-acetic acid biosynthesis, the production of volatile substances, and siderophores synthesis, were also identified. The information described in this study has established a good foundation for understanding the beneficial interactions between endophytes and host plants, and facilitates the further application of B. subtilis 7PJ-16 as an agricultural biofertilizer and biocontrol agent.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.