X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Wednesday, February 26, 2020

Impact of DNA quality on PacBio RS II read lengths.

Maximizing the read length of next generation sequencing (NGS) facilitates de novo genome assembly. Currently, the PacBio RS II system leads the industry with respect to maximum possible NGS read lengths. Amplicon Express specializes in preparation of high molecular weight, NGS-grade genomic DNA for a variety of applications, including next generation sequencing. This study was performed to evaluate the effects of gDNA quality on PacBio RS II read length.

Read More »

Sunday, September 22, 2019

Comparative mapping of the ASTRINGENCY locus controlling fruit astringency in hexaploid persimmon (Diospyros kaki Thunb.) with the diploid D. lotus reference genome

Persimmon (Diospyros kaki) is a tree crop species that originated in East Asia, consists mainly of hexaploid individuals (2n = 6x = 90) with some nonaploid individuals. One of the unique characteristics of persimmon is the continuous accumulation of proanthocyanidins (PAs) in its fruit until the middle of fruit development, resulting in a strong astringent taste even at commercial fruit maturity. Among persimmon cultivars, pollination-constant and non-astringent (PCNA) types cease PA accumulation in early fruit development and become non-astringent at commercial maturity. PCNA is an allelic trait to non-PCNA and is controlled by a single locus called the ASTRINGENCY (AST)…

Read More »

Sunday, September 22, 2019

Dynamic evolution of a-gliadin prolamin gene family in homeologous genomes of hexaploid wheat.

Wheat Gli-2 loci encode complex groups of a-gliadin prolamins that are important for breadmaking, but also major triggers of celiac disease (CD). Elucidation of a-gliadin evolution provides knowledge to produce wheat with better end-use properties and reduced immunogenic potential. The Gli-2 loci contain a large number of tandemly duplicated genes and highly repetitive DNA, making sequence assembly of their genomic regions challenging. Here, we constructed high-quality sequences spanning the three wheat homeologous a-gliadin loci by aligning PacBio-based sequence contigs with BioNano genome maps. A total of 47 a-gliadin genes were identified with only 26 encoding intact full-length protein products. Analyses…

Read More »

Sunday, September 22, 2019

Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates.

Hox genes exert fundamental roles for proper regional specification along the main rostro-caudal axis of animal embryos. They are generally expressed in restricted spatial domains according to their position in the cluster (spatial colinearity)-a feature that is conserved across bilaterians. In jawed vertebrates (gnathostomes), the position in the cluster also determines the onset of expression of Hox genes (a feature known as whole-cluster temporal colinearity (WTC)), while in invertebrates this phenomenon is displayed as a subcluster-level temporal colinearity. However, little is known about the expression profile of Hox genes in jawless vertebrates (cyclostomes); therefore, the evolutionary origin of WTC, as…

Read More »

Sunday, September 22, 2019

Identification of a leucine-rich repeat receptor-like serine/threonine-protein kinase as a candidate gene for Rvi12 (Vb)-based apple scab resistance

Apple scab caused by Venturia inaequalis is the most important fungal disease of apples (Malus × domestica). Currently, the disease is controlled by up to 15 fungicide applications to the crop per year. Resistant apple cultivars will help promote the sustainable control of scab in commercial orchards. The breakdown of the Rvi6 (Vf) major-gene based resistance, the most used resistance gene in apple breeding, prompted the identification and characterization of new scab resistance genes. By using a large segregating population, the Rvi12 scab resistance gene was previously mapped to a genetic location flanked by molecular markers SNP_23.599 and SNP_24.482. Starting…

Read More »

Sunday, September 22, 2019

Gene duplication and evolution dynamics in the homeologous regions harboring multiple prolamin and resistance gene families in hexaploid wheat.

Improving end-use quality and disease resistance are important goals in wheat breeding. The genetic loci controlling these traits are highly complex, consisting of large families of prolamin and resistance genes with members present in all three homeologous A, B, and D genomes in hexaploid bread wheat. Here, orthologous regions harboring both prolamin and resistance gene loci were reconstructed and compared to understand gene duplication and evolution in different wheat genomes. Comparison of the two orthologous D regions from the hexaploid wheat Chinese Spring and the diploid progenitor Aegilops tauschii revealed their considerable difference due to the presence of five large…

Read More »

Sunday, September 22, 2019

Towards map-based cloning of FB_Mfu10: identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10.

Breeding for resistance against the destructive fire blight disease of apples is the most sustainable strategy to control the menace of this disease, and has become increasingly important in European apple breeding programs. Since most cultivars are susceptible, wild accessions have been explored for resistance with quantitative trait loci detected in a few wild species. Fire blight resistance of Malus fusca was described following phenotypic evaluations with a C-type strain of Erwinia amylovora, Ea222_JKI, and the detection of a major QTL on chromosome 10 (Mfu10) of this crabapple. The stability of the resistance of M. fusca and Mfu10 has been…

Read More »

Sunday, September 22, 2019

Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix.

The date palm tree is a commercially important member of the genus Phoenix whose 14 species are dioecious with separate male and female individuals. To identify sex determining genes we sequenced the genomes of 15 female and 13 male Phoenix trees representing all 14 species. We identified male-specific sequences and extended them using phased single-molecule sequencing or BAC clones. We observed that only four genes contained sequences conserved in all analyzed Phoenix males. Most of these sequences showed similarity to a single genomic locus in the closely related monoecious oil palm. CYP703 and GPAT3, two single copy genes present in…

Read More »

Sunday, September 22, 2019

The sequence of a male-specific genome region containing the sex determination switch in Aedes aegypti.

Aedes aegypti is the principal vector of several important arboviruses. Among the methods of vector control to limit transmission of disease are genetic strategies that involve the release of sterile or genetically modified non-biting males, which has generated interest in manipulating mosquito sex ratios. Sex determination in Ae. aegypti is controlled by a non-recombining Y chromosome-like region called the M locus, yet characterisation of this locus has been thwarted by the repetitive nature of the genome. In 2015, an M locus gene named Nix was identified that displays the qualities of a sex determination switch.With the use of a whole-genome…

Read More »

Subscribe for blog updates:

Archives