Menu
June 1, 2021  |  

Impact of DNA quality on PacBio RS II read lengths.

Maximizing the read length of next generation sequencing (NGS) facilitates de novo genome assembly. Currently, the PacBio RS II system leads the industry with respect to maximum possible NGS read lengths. Amplicon Express specializes in preparation of high molecular weight, NGS-grade genomic DNA for a variety of applications, including next generation sequencing. This study was performed to evaluate the effects of gDNA quality on PacBio RS II read length.


September 22, 2019  |  

Comparative mapping of the ASTRINGENCY locus controlling fruit astringency in hexaploid persimmon (Diospyros kaki Thunb.) with the diploid D. lotus reference genome

Persimmon (Diospyros kaki) is a tree crop species that originated in East Asia, consists mainly of hexaploid individuals (2n = 6x = 90) with some nonaploid individuals. One of the unique characteristics of persimmon is the continuous accumulation of proanthocyanidins (PAs) in its fruit until the middle of fruit development, resulting in a strong astringent taste even at commercial fruit maturity. Among persimmon cultivars, pollination-constant and non-astringent (PCNA) types cease PA accumulation in early fruit development and become non-astringent at commercial maturity. PCNA is an allelic trait to non-PCNA and is controlled by a single locus called the ASTRINGENCY (AST) locus. Previous segregation analyses indicated that the AST locus shows hexasomic inheritance; a recessive allele, ast, at this locus confers PCNA. Here, we report a shuttle mapping approach to delimit the AST locus region in the hexaploid persimmon genome by using D. lotus, a diploid relative of D. kaki, as a reference. A D. lotus F1 population of 333 individuals and 296 D. kaki siblings segregating for the PCNA trait were used to map the AST region using haplotype-specific markers covering the AST region. This indicated that the AST locus is syntenic to an approximately 915-kb region of the D. lotus genome. In this 915-kb region, we found several candidates for AST that were revealed from the fruit transcriptome of a population segregating for the PCNA trait. These results could provide important clues for the isolation of AST in hexaploid persimmon.


September 22, 2019  |  

Dynamic evolution of a-gliadin prolamin gene family in homeologous genomes of hexaploid wheat.

Wheat Gli-2 loci encode complex groups of a-gliadin prolamins that are important for breadmaking, but also major triggers of celiac disease (CD). Elucidation of a-gliadin evolution provides knowledge to produce wheat with better end-use properties and reduced immunogenic potential. The Gli-2 loci contain a large number of tandemly duplicated genes and highly repetitive DNA, making sequence assembly of their genomic regions challenging. Here, we constructed high-quality sequences spanning the three wheat homeologous a-gliadin loci by aligning PacBio-based sequence contigs with BioNano genome maps. A total of 47 a-gliadin genes were identified with only 26 encoding intact full-length protein products. Analyses of a-gliadin loci and phylogenetic tree reconstruction indicate significant duplications of a-gliadin genes in the last ~2.5 million years after the divergence of the A, B and D genomes, supporting its rapid lineage-independent expansion in different Triticeae genomes. We showed that dramatic divergence in expression of a-gliadin genes could not be attributed to sequence variations in the promoter regions. The study also provided insights into the evolution of CD epitopes and identified a single indel event in the hexaploid wheat D genome that likely resulted in the generation of the highly toxic 33-mer CD epitope.


September 22, 2019  |  

Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates.

Hox genes exert fundamental roles for proper regional specification along the main rostro-caudal axis of animal embryos. They are generally expressed in restricted spatial domains according to their position in the cluster (spatial colinearity)-a feature that is conserved across bilaterians. In jawed vertebrates (gnathostomes), the position in the cluster also determines the onset of expression of Hox genes (a feature known as whole-cluster temporal colinearity (WTC)), while in invertebrates this phenomenon is displayed as a subcluster-level temporal colinearity. However, little is known about the expression profile of Hox genes in jawless vertebrates (cyclostomes); therefore, the evolutionary origin of WTC, as seen in gnathostomes, remains a mystery. Here, we show that Hox genes in cyclostomes are expressed according to WTC during development. We investigated the Hox repertoire and Hox gene expression profiles in three different species-a hagfish, a lamprey and a shark-encompassing the two major groups of vertebrates, and found that these are expressed following a whole-cluster, temporally staggered pattern, indicating that WTC has been conserved during the past 500?million years despite drastically different genome evolution and morphological outputs between jawless and jawed vertebrates.


September 22, 2019  |  

Identification of a leucine-rich repeat receptor-like serine/threonine-protein kinase as a candidate gene for Rvi12 (Vb)-based apple scab resistance

Apple scab caused by Venturia inaequalis is the most important fungal disease of apples (Malus × domestica). Currently, the disease is controlled by up to 15 fungicide applications to the crop per year. Resistant apple cultivars will help promote the sustainable control of scab in commercial orchards. The breakdown of the Rvi6 (Vf) major-gene based resistance, the most used resistance gene in apple breeding, prompted the identification and characterization of new scab resistance genes. By using a large segregating population, the Rvi12 scab resistance gene was previously mapped to a genetic location flanked by molecular markers SNP_23.599 and SNP_24.482. Starting from these markers, utilizing chromosome walking of a Hansen’s baccata #2 (HB2) BAC-library; a single BAC clone spanning the Rvi12 interval was identified. Following Pacific Biosciences (PacBio) RS II sequencing and the use of the hierarchical genome assembly process (HGAP) assembly of the BAC clone sequence, the Rvi12 resistance locus was localized to a 62.3-kb genomic region. Gene prediction and in silico characterization identified a single candidate resistance gene. The gene, named here as Rvi12_Cd5, belongs to the LRR receptor-like serine/threonine-protein kinase family. In silico comparison of the resistance allele from HB2 and the susceptible allele from Golden Delicious (GD) identified the presence of an additional intron in the HB2 allele. Conserved domain analysis identified the presence of four additional LRR motifs in the susceptible allele compared to the resistance allele. The constitutive expression of Rvi12_Cd5 in HB2, together with its structural similarity to known resistance genes, makes it the most likely candidate for Rvi12 scab resistance in apple.


September 22, 2019  |  

Gene duplication and evolution dynamics in the homeologous regions harboring multiple prolamin and resistance gene families in hexaploid wheat.

Improving end-use quality and disease resistance are important goals in wheat breeding. The genetic loci controlling these traits are highly complex, consisting of large families of prolamin and resistance genes with members present in all three homeologous A, B, and D genomes in hexaploid bread wheat. Here, orthologous regions harboring both prolamin and resistance gene loci were reconstructed and compared to understand gene duplication and evolution in different wheat genomes. Comparison of the two orthologous D regions from the hexaploid wheat Chinese Spring and the diploid progenitor Aegilops tauschii revealed their considerable difference due to the presence of five large structural variations with sizes ranging from 100 kb to 2 Mb. As a result, 44% of the Ae. tauschii and 71% of the Chinese Spring sequences in the analyzed regions, including 79 genes, are not shared. Gene rearrangement events, including differential gene duplication and deletion in the A, B, and D regions, have resulted in considerable erosion of gene collinearity in the analyzed regions, suggesting rapid evolution of prolamin and resistance gene families after the separation of the three wheat genomes. We hypothesize that this fast evolution is attributed to the co-evolution of the two gene families dispersed within a high recombination region. The identification of a full set of prolamin genes facilitated transcriptome profiling and revealed that the A genome contributes the least to prolamin expression because of its smaller number of expressed intact genes and their low expression levels, while the B and D genomes contribute similarly.


September 22, 2019  |  

Towards map-based cloning of FB_Mfu10: identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10.

Breeding for resistance against the destructive fire blight disease of apples is the most sustainable strategy to control the menace of this disease, and has become increasingly important in European apple breeding programs. Since most cultivars are susceptible, wild accessions have been explored for resistance with quantitative trait loci detected in a few wild species. Fire blight resistance of Malus fusca was described following phenotypic evaluations with a C-type strain of Erwinia amylovora, Ea222_JKI, and the detection of a major QTL on chromosome 10 (Mfu10) of this crabapple. The stability of the resistance of M. fusca and Mfu10 has been evaluated using two other strains, the highly aggressive Canadian S-type strain-Ea3049, and the avrRpt2EA mutant-ZYRKD3-1, both of which overcome the resistance of Malus ×robusta 5, a wild species accession with an already described fire blight resistance gene. To pave the way for positional cloning of the underlying fire blight resistance gene of M. fusca, we have fine mapped the QTL region on linkage group 10 using 1888 individuals and 23 newly developed molecular markers, thus delimiting the interval of interest to 0.33 cM between markers FR39G5T7xT7y/FR24N24RP and FRMf7358424/FR46H22. Tightly linked SSR markers are suitable for marker-assisted selection in breeding programs. Furthermore, a bacterial artificial chromosome (BAC) clone spanning FB_Mfu10 region was isolated and sequenced. One putative fire blight resistance candidate gene of M. fusca was predicted on the sequence of BAC 46H22 within the resistance region that encodes B-lectin and serine/threonine kinase domains.


September 22, 2019  |  

Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix.

The date palm tree is a commercially important member of the genus Phoenix whose 14 species are dioecious with separate male and female individuals. To identify sex determining genes we sequenced the genomes of 15 female and 13 male Phoenix trees representing all 14 species. We identified male-specific sequences and extended them using phased single-molecule sequencing or BAC clones. We observed that only four genes contained sequences conserved in all analyzed Phoenix males. Most of these sequences showed similarity to a single genomic locus in the closely related monoecious oil palm. CYP703 and GPAT3, two single copy genes present in males and critical for male flower development in other monocots, were absent in females. A LOG-like gene appears translocated into the Y-linked region and is suggested to play a role in suppressing female flowers. Our data are consistent with a two-mutation model for the evolution of dioecy in Phoenix.


September 22, 2019  |  

The sequence of a male-specific genome region containing the sex determination switch in Aedes aegypti.

Aedes aegypti is the principal vector of several important arboviruses. Among the methods of vector control to limit transmission of disease are genetic strategies that involve the release of sterile or genetically modified non-biting males, which has generated interest in manipulating mosquito sex ratios. Sex determination in Ae. aegypti is controlled by a non-recombining Y chromosome-like region called the M locus, yet characterisation of this locus has been thwarted by the repetitive nature of the genome. In 2015, an M locus gene named Nix was identified that displays the qualities of a sex determination switch.With the use of a whole-genome bacterial artificial chromosome (BAC) library, we amplified and sequenced a ~200 kb region containing the male-determining gene Nix. In this study, we show that Nix is comprised of two exons separated by a 99 kb intron primarily composed of repetitive DNA, especially transposable elements.Nix, an unusually large and highly repetitive gene, exhibits features in common with Y chromosome genes in other organisms. We speculate that the lack of recombination at the M locus has allowed the expansion of repeats in a manner characteristic of a sex-limited chromosome, in accordance with proposed models of sex chromosome evolution in insects.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.