June 1, 2021  |  

Complete microbial genomes, epigenomes, and transcriptomes using long-read PacBio Sequencing.

For comprehensive metabolic reconstructions and a resulting understanding of the pathways leading to natural products, it is desirable to obtain complete information about the genetic blueprint of the organisms used. Traditional Sanger and next-generation, short-read sequencing technologies have shortcomings with respect to read lengths and DNA-sequence context bias, leading to fragmented and incomplete genome information. The development of long-read, single molecule, real-time (SMRT) DNA sequencing from Pacific Biosciences, with >10,000 bp average read lengths and a lack of sequence context bias, now allows for the generation of complete genomes in a fully automated workflow. In addition to the genome sequence, DNA methylation is characterized in the process of sequencing. PacBio® sequencing has also been applied to microbial transcriptomes. Long reads enable sequencing of full-length cDNAs allowing for identification of complete gene and operon sequences without the need for transcript assembly. We will highlight several examples where these capabilities have been leveraged in the areas of industrial microbiology, including biocommodities, biofuels, bioremediation, new bacteria with potential commercial applications, antibiotic discovery, and livestock/plant microbiome interactions.

April 21, 2020  |  

Tracking short-term changes in the genetic diversity and antimicrobial resistance of OXA-232-producing Klebsiella pneumoniae ST14 in clinical settings.

To track stepwise changes in genetic diversity and antimicrobial resistance in rapidly evolving OXA-232-producing Klebsiella pneumoniae ST14, an emerging carbapenem-resistant high-risk clone, in clinical settings.Twenty-six K. pneumoniae ST14 isolates were collected by the Korean Nationwide Surveillance of Antimicrobial Resistance system over the course of 1 year. Isolates were subjected to whole-genome sequencing and MIC determinations using 33 antibiotics from 14 classes.Single-nucleotide polymorphism (SNP) typing identified 72 unique SNP sites spanning the chromosomes of the isolates, dividing them into three clusters (I, II and III). The initial isolate possessed two plasmids with 18 antibiotic-resistance genes, including blaOXA-232, and exhibited resistance to 11 antibiotic classes. Four other plasmids containing 12 different resistance genes, including blaCTX-M-15 and strA/B, were introduced over time, providing additional resistance to aztreonam and streptomycin. Moreover, chromosomal integration of insertion sequence Ecp1-blaCTX-M-15 mediated the inactivation of mgrB responsible for colistin resistance in four isolates from cluster III. To the best of our knowledge, this is the first description of K. pneumoniae ST14 resistant to both carbapenem and colistin in South Korea. Furthermore, although some acquired genes were lost over time, the retention of 12 resistance genes and inactivation of mgrB provided resistance to 13 classes of antibiotics.We describe stepwise changes in OXA-232-producing K. pneumoniae ST14 in vivo over time in terms of antimicrobial resistance. Our findings contribute to our understanding of the evolution of emerging high-risk K. pneumoniae clones and provide reference data for future outbreaks.Copyright © 2019 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

April 21, 2020  |  

Potent LpxC Inhibitors with In Vitro Activity Against Multi-Drug Resistant Pseudomonas aeruginosa.

New drugs with novel mechanisms of resistance are desperately needed to address both community and nosocomial infections due to Gram-negative bacteria. One such potential target is LpxC, an essential enzyme that catalyzes the first committed step of Lipid A biosynthesis. Achaogen conducted an extensive research campaign to discover novel LpxC inhibitors with activity against Pseudomonas aeruginosa We report here the in vitro antibacterial activity and pharmacodynamics of ACHN-975, the only molecule from these efforts and the first ever LpxC inhibitor to be evaluated in Phase 1 clinical trials. In addition, we describe the profile of three additional LpxC inhibitors that were identified as potential lead molecules. These efforts did not produce an additional development candidate with a sufficiently large therapeutic window and the program was subsequently terminated.Copyright © 2019 American Society for Microbiology.

April 21, 2020  |  

Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human.

Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains.

April 21, 2020  |  

Detection of transferable oxazolidinone resistance determinants in Enterococcus faecalis and Enterococcus faecium of swine origin in Sichuan Province, China.

The aim of this study was to detect the transferable oxazolidinone resistance determinants (cfr, optrA and poxtA) in E. faecalis and E. faecium of swine origin in Sichuan Province, China.A total of 158 enterococci strains (93 E. faecalis and 65 E. faecium) isolated from 25 large-scale swine farms were screened for the presence of cfr, optrA and poxtA by PCR. The genetic environments of cfr, optrA and poxtA were characterized by whole genome sequencing. Transfer of oxazolidinone resistance determinants was determined by conjugation or electrotransformation experiments.The transferable oxazolidinone resistance determinants, cfr, optrA and poxtA, were detected in zero, six, and one enterococci strains, respectively. The poxtA in one E. faecalis strain was located on a 37,990 bp plasmid, which co-harbored fexB, cat, tet(L) and tet(M), and could be conjugated to E. faecalis JH2-2. One E. faecalis strain harbored two different OptrA variants, including one variant with a single substitution, Q219H, which has not been reported previously. Two optrA-carrying plasmids, pC25-1, with a size of 45,581 bp, and pC54, with a size of 64,500 bp, shared a 40,494 bp identical region that contained genetic context IS1216E-fexA-optrA-erm(A)-IS1216E, which could be electrotransformed into Staphylococcus aureus. Four different chromosomal optrA gene clusters were found in five strains, in which optrA was associated with Tn554 or Tn558 that were inserted into the radC gene.Our study highlights the fact that mobile genetic elements, such as plasmids, IS1216E, Tn554 and Tn558, may facilitate the horizontal transmission of optrA or poxtA.Copyright © 2019. Published by Elsevier Ltd.

April 21, 2020  |  

The use of Online Tools for Antimicrobial Resistance Prediction by Whole Genome Sequencing in MRSA and VRE.

The antimicrobial resistance (AMR) crisis represents a serious threat to public health and has resulted in concentrated efforts to accelerate development of rapid molecular diagnostics for AMR. In combination with publicly-available web-based AMR databases, whole genome sequencing (WGS) offers the capacity for rapid detection of antibiotic resistance genes. Here we studied the concordance between WGS-based resistance prediction and phenotypic susceptibility testing results for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus (VRE) clinical isolates using publicly-available tools and databases.Clinical isolates prospectively collected at the University of Pittsburgh Medical Center between December 2016 and December 2017 underwent WGS. Antibiotic resistance gene content was assessed from assembled genomes by BLASTn search of online databases. Concordance between WGS-predicted resistance profile and phenotypic susceptibility as well as sensitivity, specificity, positive and negative predictive values (NPV, PPV) were calculated for each antibiotic/organism combination, using the phenotypic results as the gold standard.Phenotypic susceptibility testing and WGS results were available for 1242 isolate/antibiotic combinations. Overall concordance was 99.3% with a sensitivity, specificity, PPV, NPV of 98.7% (95% CI, 97.2-99.5%), 99.6% (95 % CI, 98.8-99.9%), 99.3% (95% CI, 98.0-99.8%), 99.2% (95% CI, 98.3-99.7%), respectively. Additional identification of point mutations in housekeeping genes increased the concordance to 99.4% and the sensitivity to 99.3% (95% CI, 98.2-99.8%) and NPV to 99.4% (95% CI, 98.4-99.8%).WGS can be used as a reliable predicator of phenotypic resistance for both MRSA and VRE using readily-available online tools.Copyright © 2019. Published by Elsevier Ltd.

April 21, 2020  |  

Evolution and global transmission of a multidrug-resistant, community-associated MRSA lineage from the Indian subcontinent

The evolution and global transmission of antimicrobial resistance has been well documented in Gram-negative bacteria and healthcare-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. Here, we trace the recent origins and global spread of a multidrug resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology of the lineage. Our data shows that the clone emerged on the Indian subcontinent in the early 1970s and disseminated rapidly in the 1990s. Short-term outbreaks in community and healthcare settings occurred following intercontinental transmission, typically associated with travel and family contacts on the subcontinent, but ongoing endemic transmission was uncommon. Acquisition of a multidrug resistance integrated plasmid was instrumental in the divergence of a single dominant and globally disseminated clade in the early 1990s. Phenotypic data on biofilm, growth and toxicity point to antimicrobial resistance as the driving force in the evolution of ST772. The Bengal Bay clone therefore combines the multidrug resistance of traditional healthcare-associated clones with the epidemiological transmission of community-associated MRSA. Our study demonstrates the importance of whole genome sequencing for tracking the evolution of emerging and resistant pathogens. It provides a critical framework for ongoing surveillance of the clone on the Indian subcontinent and elsewhere.Importance The Bengal Bay clone (ST772) is a community-acquired and multidrug-resistant Staphylococcus aureus lineage first isolated from Bangladesh and India in 2004. In this study, we show that the Bengal Bay clone emerged from a virulent progenitor circulating on the Indian subcontinent. Its subsequent global transmission was associated with travel or family contact in the region. ST772 progressively acquired specific resistance elements at limited cost to its fitness and continues to be exported globally resulting in small-scale community and healthcare outbreaks. The Bengal Bay clone therefore combines the virulence potential and epidemiology of community-associated clones with the multidrug-resistance of healthcare-associated S. aureus lineages. This study demonstrates the importance of whole genome sequencing for the surveillance of highly antibiotic resistant pathogens, which may emerge in the community setting of regions with poor antibiotic stewardship and rapidly spread into hospitals and communities across the world.

April 21, 2020  |  

Advantage of the F2:A1:B- IncF Pandemic Plasmid over IncC Plasmids in In Vitro Acquisition and Evolution of blaCTX-M Gene-Bearing Plasmids in Escherichia coli.

Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum ß-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed a significant fitness cost to the bacterial host immediately after conjugation, we show, using an experimental-evolution approach, that a negative impact on the fitness of the host strain was maintained throughout 1,120 generations with the IncC-IncR plasmid, regardless of the presence or absence of cefotaxime, in contrast to the F2:A1:B- IncF plasmid, whose cost was alleviated. Many chromosomal and plasmid rearrangements were detected after conjugation in transconjugants carrying the IncC plasmids but not in transconjugants carrying the F2:A1:B- IncF plasmid, except for insertion sequence (IS) mobilization from the fliM gene leading to the restoration of motility of the recipient strains. Only a few mutations occurred on the chromosome of each transconjugant throughout the experimental-evolution assay. Our findings indicate that the F2:A1:B- IncF CTX-M-15 plasmid is well adapted to the E. coli strain studied, contrary to the IncC-IncR CTX-M-15 plasmid, and that such plasmid-host adaptation could participate in the evolutionary success of the CTX-M-15-producing pandemic E. coli ST131-O25b:H4 lineage.Copyright © 2019 Mahérault et al.

April 21, 2020  |  

Intercellular Transfer of Chromosomal Antimicrobial Resistance Genes between Acinetobacter baumannii Strains Mediated by Prophages.

The spread of antimicrobial resistance genes (ARGs) among Gram-negative pathogens, including Acinetobacter baumannii, is primarily mediated by transferable plasmids; however, ARGs are frequently integrated into its chromosome. How ARG gets horizontally incorporated into the chromosome of A. baumannii, and whether it functions as a cause for further spread of ARG, remains unknown. Here, we demonstrated intercellular prophage-mediated transfer of chromosomal ARGs without direct cell-cell interaction in A. baumannii We prepared ARG-harboring extracellular DNA (eDNA) components from the culture supernatant of a multidrug-resistant (MDR) A. baumannii NU-60 strain and exposed an antimicrobial-susceptible (AS) A. baumannii ATCC 17978 strain to the eDNA components. The antimicrobial-resistant (AR) A. baumannii ATCC 17978 derivatives appeared to acquire various ARGs, originating from dispersed loci of the MDR A. baumannii chromosome, along with their surrounding regions, by homologous recombination, with the ARGs including armA (aminoglycoside resistance), blaTEM-1 (ß-lactam resistance), tet(B) (tetracycline resistance), and gyrA-81L (nalidixic acid resistance) genes. Notably, the eDNAs conferring antimicrobial resistance were enveloped in specific capsid proteins consisting of phage particles, thereby protecting the eDNAs from detergent and DNase treatments. The phages containing ARGs were likely released into the extracellular space from MDR A. baumannii, thereby transducing ARGs into AS A. baumannii, resulting in the acquisition of AR properties by the recipient. We concluded that the generalized transduction, in which phages were capable of carrying random pieces of A. baumannii genomic DNAs, enabled efficacious intercellular transfer of chromosomal ARGs between A. baumannii strains without direct cell-cell interaction. Copyright © 2019 American Society for Microbiology.

April 21, 2020  |  

Genomic and transcriptomic characterization of Pseudomonas aeruginosa small colony variants derived from a chronic infection model.

Phenotypic change is a hallmark of bacterial adaptation during chronic infection. In the case of chronic Pseudomonas aeruginosa lung infection in patients with cystic fibrosis, well-characterized phenotypic variants include mucoid and small colony variants (SCVs). It has previously been shown that SCVs can be reproducibly isolated from the murine lung following the establishment of chronic infection with mucoid P. aeruginosa strain NH57388A. Using a combination of single-molecule real-time (PacBio) and Illumina sequencing we identify a large genomic inversion in the SCV through recombination between homologous regions of two rRNA operons and an associated truncation of one of the 16S rRNA genes and suggest this may be the genetic switch for conversion to the SCV phenotype. This phenotypic conversion is associated with large-scale transcriptional changes distributed throughout the genome. This global rewiring of the cellular transcriptomic output results in changes to normally differentially regulated genes that modulate resistance to oxidative stress, central metabolism and virulence. These changes are of clinical relevance because the appearance of SCVs during chronic infection is associated with declining lung function.

April 21, 2020  |  

Spreading Patterns of NDM-Producing Enterobacteriaceae in Clinical and Environmental Settings in Yangon, Myanmar.

The spread of carbapenemase-producing Enterobacteriaceae (CPE), contributing to widespread carbapenem resistance, has become a global concern. However, the specific dissemination patterns of carbapenemase genes have not been intensively investigated in developing countries, including Myanmar, where NDM-type carbapenemases are spreading in clinical settings. In the present study, we phenotypically and genetically characterized 91 CPE isolates obtained from clinical (n = 77) and environmental (n = 14) samples in Yangon, Myanmar. We determined the dissemination of plasmids harboring genes encoding NDM-1 and its variants using whole-genome sequencing and plasmid analysis. IncFII plasmids harboring blaNDM-5 and IncX3 plasmids harboring blaNDM-4 or blaNDM-7 were the most prevalent plasmid types identified among the isolates. The IncFII plasmids were predominantly carried by clinical isolates of Escherichia coli, and their clonal expansion was observed within the same ward of a hospital. In contrast, the IncX3 plasmids were found in phylogenetically divergent isolates from clinical and environmental samples classified into nine species, suggesting widespread dissemination of plasmids via horizontal transfer. Half of the environmental isolates were found to possess IncX3 plasmids, and this type of plasmid was confirmed to transfer more effectively to recipient organisms at a relatively low temperature (25°C) compared to the IncFII plasmid. Moreover, various other plasmid types were identified harboring blaNDM-1, including IncFIB, IncFII, IncL/M, and IncA/C2, among clinical isolates of Klebsiella pneumoniae or Enterobacter cloacae complex. Overall, our results highlight three distinct patterns of the dissemination of blaNDM-harboring plasmids among CPE isolates in Myanmar, contributing to a better understanding of their molecular epidemiology and dissemination in a setting of endemicity.Copyright © 2019 American Society for Microbiology.

April 21, 2020  |  

Evolution of a clade of Acinetobacter baumannii global clone 1, lineage 1 via acquisition of carbapenem- and aminoglycoside-resistance genes and dispersion of ISAba1.

Resistance to carbapenem and aminoglycoside antibiotics is a critical problem in Acinetobacter baumannii, particularly when genes conferring resistance are acquired by multiply or extensively resistant members of successful globally distributed clonal complexes, such as global clone 1 (GC1) . Here, we investigate the evolution of an expanding clade of lineage 1 of the GC1 complex via repeated acquisition of carbapenem- and aminoglycoside-resistance genes. Lineage 1 arose in the late 1970s and the Tn6168/OCL3 clade arose in the late 1990s from an ancestor that had already acquired resistance to third-generation cephalosporins and fluoroquinolones. Between 2000 and 2002, two distinct subclades have emerged, and they are distinguishable via the presence of an integrated phage genome in subclade 1 and AbaR4 (carrying the oxa23 carbapenem-resistance gene in Tn2006) at a specific chromosomal location in subclade 2. Part or all of the original resistance gene cluster in the chromosomally located AbaR3 has been lost from some isolates, but plasmids carrying alternate resistance genes have been gained. In one group in subclade 2, the chromosomally located AbGRI3, carrying the armA aminoglycoside-resistance gene, has been acquired from a GC2 isolate and incorporated via homologous recombination. ISAba1 entered the common ancestor of this clade as part of the cephalosporin-resistance transposon Tn6168 and has dispersed differently in each subclade. Members of subclade 1 share an ISAba1 in one specific position in the chromosome and in subclade 2 two different ISAba1 locations are shared. Further shared ISAba1 locations distinguish further divisions, potentially providing simple markers for epidemiological studies.

April 21, 2020  |  

Complete Sequence of a Novel Multidrug-Resistant Pseudomonas putida Strain Carrying Two Copies of qnrVC6.

This study aimed at identification and characterization of a novel multidrug-resistant Pseudomonas putida strain Guangzhou-Ppu420 carrying two copies of qnrVC6 isolated from a hospital in Guangzhou, China, in 2012. Antimicrobial susceptibility was tested by Vitek2™ Automated Susceptibility System and Etest™ strips, and whole-genome sequencing facilitated analysis of its multidrug resistance. The genome has a length of 6,031,212?bp and an average G?+?C content of 62.01%. A total of 5,421 open reading frames were identified, including eight 5S rRNA, seven 16S rRNA, and seven 23S rRNA, and 76 tRNA genes. Importantly, two copies of qnrVC6 gene with three ISCR1 around, a blaVIM-2 carrying integron In528, a novel gcu173 carrying integron In1348, and six antibiotic resistance genes were identified. This is the first identification of two copies of the qnrVC6 gene in a single P. putida isolate and a class 1 integron In1348.

April 21, 2020  |  

Genetic variation in the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain.

Bacteria harboring conjugative plasmids have the potential for spreading antibiotic resistance through horizontal gene transfer. It is described that the selection and dissemination of antibiotic resistance is enhanced by stressors, like metals or antibiotics, which can occur as environmental contaminants. This study aimed at unveiling the composition of the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain (H1FC54) under different mating conditions. To meet this objective, plasmid pulsed field gel electrophoresis, optical mapping analyses and DNA sequencing were used in combination with phenotype analysis. Strain H1FC54 was observed to harbor five plasmids, three of which were conjugative and two of these, pH1FC54_330 and pH1FC54_140, contained metal and antibiotic resistance genes. Transconjugants obtained in the absence or presence of tellurite (0.5?µM or 5?µM), arsenite (0.5?µM, 5?µM or 15?µM) or ceftazidime (10?mg/L) and selected in the presence of sodium azide (100?mg/L) and tetracycline (16?mg/L) presented distinct phenotypes, associated with the acquisition of different plasmid combinations, including two co-integrate plasmids, of 310 kbp and 517 kbp. The variable composition of the conjugative plasmidome, the formation of co-integrates during conjugation, as well as the transfer of non-transferable plasmids via co-integration, and the possible association between antibiotic, arsenite and tellurite tolerance was demonstrated. These evidences bring interesting insights into the comprehension of the molecular and physiological mechanisms that underlie antibiotic resistance propagation in the environment. Copyright © 2019 Elsevier Ltd. All rights reserved.

April 21, 2020  |  

Complete genome sequence of an IMP-8, CTX-M-14, CTX-M-3 and QnrS1 co-producing Enterobacter asburiae isolate from a patient with wound infection.

The aim of this study was to investigate the characteristics and complete genome sequence of an IMP-8, CTX-M-14, CTX-M-3 and QnrS1 co-producing multidrug-resistant Enterobacter asburiae isolate (EN3600) from a patient with wound infection.Species identification was confirmed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Carbapenemase genes were identified by PCR and Sanger sequencing. The complete genome sequence of E. asburiae EN3600 was obtained using a PacBio RS II platform. Genome annotation was done by Rapid Annotation using Subsystem Technology (RAST) server. Acquired antimicrobial resistance genes (ARGs) and plasmid replicons were detected using ResFinder 2.1 and PlasmidFinder 1.3, respectively.The genome of E. asburiae EN3600 consists of a 4.8-Mbp chromosome and five plasmids. The annotated genome contains various ARGs conferring resistance to aminoglycosides, ß-lactams, fluoroquinolones, fosfomycin, macrolides, phenicols, rifampicin and sulfonamides. In addition, plasmids of incompatibility (Inc) groups IncHI2A, IncFIB(pECLA), IncFIB(pQil) and IncP1 were identified. The genes blaIMP-8, blaCTX-M-14 and blaCTX-M-3 were located on different plasmids. The blaIMP-8 gene was carried by an 86-kb IncFIB(pQil) plasmid. The blaCTX-M-3 and qnrS1 genes were co-harboured by an IncP1 plasmid. In addition, blaCTX-M-14 was associated with blaTEM-1B, blaOXA-1, catB3 and sul1 genes in a 116-kb non-typeable plasmid.To our knowledge, this is the first complete genome sequence of an E. asburiae isolate co-producing IMP-8, CTX-M-14, CTX-M-3 and QnrS1. This genome may facilitate the understanding of the resistome, pathogenesis and genomic features of Enterobacter cloacae complex (ECC) and will provide valuable information for accurate identification of ECC.Copyright © 2019 International Society for Antimicrobial Chemotherapy. Published by Elsevier Ltd. All rights reserved.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.