Menu
April 21, 2020  |  

Alternative Splicing of the Delta-Opioid Receptor Gene Suggests Existence of New Functional Isoforms.

The delta-opioid receptor (DOPr) participates in mediating the effects of opioid analgesics. However, no selective agonists have entered clinical care despite potential to ameliorate many neurological and psychiatric disorders. In an effort to address the drug development challenges, the functional contribution of receptor isoforms created by alternative splicing of the three-exonic coding gene, OPRD1, has been overlooked. We report that the gene is transcriptionally more diverse than previously demonstrated, producing novel protein isoforms in humans and mice. We provide support for the functional relevance of splice variants through context-dependent expression profiling (tissues, disease model) and conservation of the transcriptional landscape in closely related vertebrates. The conserved alternative transcriptional events have two distinct patterns. First, cassette exon inclusions between exons 1 and 2 interrupt the reading frame, producing truncated receptor fragments comprising only the first transmembrane (TM) domain, despite the lack of exact exon orthologues between distant species. Second, a novel promoter and transcriptional start site upstream of exon 2 produces a transcript of an N-terminally truncated 6TM isoform. However, a fundamental difference in the exonic landscaping as well as translation and translation products poses limits for modelling the human DOPr receptor system in mice.


April 21, 2020  |  

Genetic basis of functional variability in adhesion G protein-coupled receptors.

The enormous sizes of adhesion G protein-coupled receptors (aGPCRs) go along with complex genomic exon-intron architectures giving rise to multiple mRNA variants. There is a need for a comprehensive catalog of aGPCR variants for proper evaluation of the complex functions of aGPCRs found in structural, in vitro and animal model studies. We used an established bioinformatics pipeline to extract, quantify and visualize mRNA variants of aGPCRs from deeply sequenced transcriptomes. Data analysis showed that aGPCRs have multiple transcription start sites even within introns and that tissue-specific splicing is frequent. On average, 19 significantly expressed transcript variants are derived from a given aGPCR gene. The domain architecture of the N terminus encoded by transcript variants often differs and N termini without or with an incomplete seven-helix transmembrane anchor as well as separate seven-helix transmembrane domains are frequently derived from aGPCR genes. Experimental analyses of selected aGPCR transcript variants revealed marked functional differences. Our analysis has an impact on a rational design of aGPCR constructs for structural analyses and gene-deficient mouse lines and provides new support for independent functions of both, the large N terminus and the transmembrane domain of aGPCRs.


July 7, 2019  |  

On the importance of homology in the age of phylogenomics

Homology is perhaps the most central concept of phylogenetic biology. Molecular systematists have traditionally paid due attention to the homology statements that are implied by their alignments of orthologous sequences, but some authors have suggested that manual gene-by-gene curation is not sustainable in the phylogenomics era. Here, we show that there are multiple ways to efficiently screen for and detect homology errors in phylogenomic data sets. Application of these screening approaches to two phylogenomic data sets, one for birds and another for mammals, shows that these data are replete with homology errors including alignments of different exons to each other, alignments of exons to introns, and alignments of paralogues to each other. The extent of these homology errors weakens the conclusions of studies based on these data sets. Despite advances in automated phylogenomic pipelines, we contend that much of the long, difficult, and sometimes tedious work of systematics is still required to guard against pervasive homology errors. This conclusion is underscored by recent studies that show that just a few outlier genes can impact phylogenetic results at short, tightly spaced internodes that are deep in the Tree of Life. The view that widespread DNA sequence alignment errors are not a major concern for rigorous systematic research is not tenable. If a primary goal of phylogenomics is to resolve the most challenging phylogenetic problems with the abundant data that are now available, researchers must employ effective procedures to screen for and correct homology errors prior to performing downstream phylogenetic analyses.


July 7, 2019  |  

Regulation of neuronal differentiation, function, and plasticity by alternative splicing.

Posttranscriptional mechanisms provide powerful means to expand the coding power of genomes. In nervous systems, alternative splicing has emerged as a fundamental mechanism not only for the diversification of protein isoforms but also for the spatiotemporal control of transcripts. Thus, alternative splicing programs play instructive roles in the development of neuronal cell type-specific properties, neuronal growth, self-recognition, synapse specification, and neuronal network function. Here we discuss the most recent genome-wide efforts on mapping RNA codes and RNA-binding proteins for neuronal alternative splicing regulation. We illustrate how alternative splicing shapes key steps of neuronal development, neuronal maturation, and synaptic properties. Finally, we highlight efforts to dissect the spatiotemporal dynamics of alternative splicing and their potential contribution to neuronal plasticity and the mature nervous system. Expected final online publication date for the Annual Review of Cell and Developmental Biology Volume 34 is October 6, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.