April 21, 2020  |  

Intercellular communication is required for trap formation in the nematode-trapping fungus Duddingtonia flagrans.

Nematode-trapping fungi (NTF) are a large and diverse group of fungi, which may switch from a saprotrophic to a predatory lifestyle if nematodes are present. Different fungi have developed different trapping devices, ranging from adhesive cells to constricting rings. After trapping, fungal hyphae penetrate the worm, secrete lytic enzymes and form a hyphal network inside the body. We sequenced the genome of Duddingtonia flagrans, a biotechnologically important NTF used to control nematode populations in fields. The 36.64 Mb genome encodes 9,927 putative proteins, among which are more than 638 predicted secreted proteins. Most secreted proteins are lytic enzymes, but more than 200 were classified as small secreted proteins (< 300 amino acids). 117 putative effector proteins were predicted, suggesting interkingdom communication during the colonization. As a first step to analyze the function of such proteins or other phenomena at the molecular level, we developed a transformation system, established the fluorescent proteins GFP and mCherry, adapted an assay to monitor protein secretion, and established gene-deletion protocols using homologous recombination or CRISPR/Cas9. One putative virulence effector protein, PefB, was transcriptionally induced during the interaction. We show that the mature protein is able to be imported into nuclei in Caenorhabditis elegans cells. In addition, we studied trap formation and show that cell-to-cell communication is required for ring closure. The availability of the genome sequence and the establishment of many molecular tools will open new avenues to studying this biotechnologically relevant nematode-trapping fungus.

April 21, 2020  |  

Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria.

Beneficial microorganisms are widely used in agriculture for control of plant pathogens, but a lack of efficacy and safety information has limited the exploitation of multiple promising biopesticides. We applied phylogeny-led genome mining, metabolite analyses and biological control assays to define the efficacy of Burkholderia ambifaria, a naturally beneficial bacterium with proven biocontrol properties but potential pathogenic risk. A panel of 64 B.?ambifaria strains demonstrated significant antimicrobial activity against priority plant pathogens. Genome sequencing, specialized metabolite biosynthetic gene cluster mining and metabolite analysis revealed an armoury of known and unknown pathways within B.?ambifaria. The biosynthetic gene cluster responsible for the production of the metabolite cepacin was identified and directly shown to mediate protection of germinating crops against Pythium damping-off disease. B.?ambifaria maintained biopesticidal protection and overall fitness in the soil after deletion of its third replicon, a non-essential plasmid associated with virulence in Burkholderia?cepacia complex bacteria. Removal of the third replicon reduced B.?ambifaria persistence in a murine respiratory infection model. Here, we show that by using interdisciplinary phylogenomic, metabolomic and functional approaches, the mode of action of natural biological control agents related to pathogens can be systematically established to facilitate their future exploitation.

April 21, 2020  |  

The role of long-term mineral and organic fertilisation treatment in changing pathogen and symbiont community composition in soil

Application of organic fertilisers to soil prevents erosion, improves fertility and may suppress certain soil-borne plant pathogens, but it is still unclear how different trophic groups of fungi and oomycetes respond to long-term fertilisation treatment. The objective of the study was to examine the effect of different fertilisation regimes on fungal and oomycete pathogen- and mycorrhizal symbiont diversity and community structure in both soil and roots, using PacBio SMRT sequencing. The field experiment included three fertilisation treatments that have been applied since 1989: nitrogen fertilisation (WOM), nitrogen fertilisation with manure amendment (FYM) and alternative organic fertilisation (AOF), each applied at five different rates. Soil samples were collected three times during the growing season, while root samples were collected during the flowering stage. There was no influence of the studied variables on soil and root pathogen richness. Contrary to our hypothesis, pathogen relative abundance in both soil and roots was significantly higher in plots with the AOF treatment. Furthermore, richness and relative abundance of arbuscular mycorrhizal (AM) fungi decreased significantly in the AOF treatment. Permutational analysis of variance (PERMANOVA) demonstrated the effect of fertilisation treatment on pathogen community composition in both soil and roots. Our findings indicate that organic fertilisers may not always benefit soil microbial community composition. Therefore, further studies are needed to understand how fertilisation affects mycorrhizal mutualists and pathogens.

April 21, 2020  |  

Population Genome Sequencing of the Scab Fungal Species Venturia inaequalis, Venturia pirina, Venturia aucupariae and Venturia asperata.

The Venturia genus comprises fungal species that are pathogens on Rosaceae host plants, including V. inaequalis and V. asperata on apple, V. aucupariae on sorbus and V. pirina on pear. Although the genetic structure of V. inaequalis populations has been investigated in detail, genomic features underlying these subdivisions remain poorly understood. Here, we report whole genome sequencing of 87 Venturia strains that represent each species and each population within V. inaequalis We present a PacBio genome assembly for the V. inaequalis EU-B04 reference isolate. The size of selected genomes was determined by flow cytometry, and varied from 45 to 93 Mb. Genome assemblies of V. inaequalis and V. aucupariae contain a high content of transposable elements (TEs), most of which belong to the Gypsy or Copia LTR superfamilies and have been inactivated by Repeat-Induced Point mutations. The reference assembly of V. inaequalis presents a mosaic structure of GC-equilibrated regions that mainly contain predicted genes and AT-rich regions, mainly composed of TEs. Six pairs of strains were identified as clones. Single-Nucleotide Polymorphism (SNP) analysis between these clones revealed a high number of SNPs that are mostly located in AT-rich regions due to misalignments and allowed determining a false discovery rate. The availability of these genome sequences is expected to stimulate genetics and population genomics research of Venturia pathogens. Especially, it will help understanding the evolutionary history of Venturia species that are pathogenic on different hosts, a history that has probably been substantially influenced by TEs.Copyright © 2019 Le Cam et al.

April 21, 2020  |  

Genomic Plasticity Mediated by Transposable Elements in the Plant Pathogenic Fungus Colletotrichum higginsianum.

Phytopathogen genomes are under constant pressure to change, as pathogens are locked in an evolutionary arms race with their hosts, where pathogens evolve effector genes to manipulate their hosts, whereas the hosts evolve immune components to recognize the products of these genes. Colletotrichum higginsianum (Ch), a fungal pathogen with no known sexual morph, infects Brassicaceae plants including Arabidopsis thaliana. Previous studies revealed that Ch differs in its virulence toward various Arabidopsis thaliana ecotypes, indicating the existence of coevolutionary selective pressures. However, between-strain genomic variations in Ch have not been studied. Here, we sequenced and assembled the genome of a Ch strain, resulting in a highly contiguous genome assembly, which was compared with the chromosome-level genome assembly of another strain to identify genomic variations between strains. We found that the two closely related strains vary in terms of large-scale rearrangements, the existence of strain-specific regions, and effector candidate gene sets and that these variations are frequently associated with transposable elements (TEs). Ch has a compartmentalized genome consisting of gene-sparse, TE-dense regions with more effector candidate genes and gene-dense, TE-sparse regions harboring conserved genes. Additionally, analysis of the conservation patterns and syntenic regions of effector candidate genes indicated that the two strains vary in their effector candidate gene sets because of de novo evolution, horizontal gene transfer, or gene loss after divergence. Our results reveal mechanisms for generating genomic diversity in this asexual pathogen, which are important for understanding its adaption to hosts. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

April 21, 2020  |  

Differences in resource use lead to coexistence of seed-transmitted microbial populations.

Seeds are involved in the vertical transmission of microorganisms in plants and act as reservoirs for the plant microbiome. They could serve as carriers of pathogens, making the study of microbial interactions on seeds important in the emergence of plant diseases. We studied the influence of biological disturbances caused by seed transmission of two phytopathogenic agents, Alternaria brassicicola Abra43 (Abra43) and Xanthomonas campestris pv. campestris 8004 (Xcc8004), on the structure and function of radish seed microbial assemblages, as well as the nutritional overlap between Xcc8004 and the seed microbiome, to find seed microbial residents capable of outcompeting this pathogen. According to taxonomic and functional inference performed on metagenomics reads, no shift in structure and function of the seed microbiome was observed following Abra43 and Xcc8004 transmission. This lack of impact derives from a limited overlap in nutritional resources between Xcc8004 and the major bacterial populations of radish seeds. However, two native seed-associated bacterial strains belonging to Stenotrophomonas rhizophila displayed a high overlap with Xcc8004 regarding the use of resources; they might therefore limit its transmission. The strategy we used may serve as a foundation for the selection of seed indigenous bacterial strains that could limit seed transmission of pathogens.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.