Interested to learn about pangenomes? Explore this guide to learn how they provide a more complete picture of the core genes of a given species and how that can provide better biological understanding.
With the PacBio no-amplification (No-Amp) targeted sequencing method, you can now sequence through previously inaccessible regions of the genome to provide base-level resolution of disease-causing repeat expansions. By combining the CRISPR-Cas9 enrichment method with Single Molecule, Real-Time (SMRT) Sequencing on the Sequel Systems you are no longer limited by hard-to-amplify targets.
The Sequel II and IIe Systems are powered by Single Molecule, Real-Time (SMRT) Sequencing, a technology proven to produce highly accurate long reads, known as HiFi reads, for sequencing data you and your customers can trust.
In this BioConference Live webinar, PacBio CSO Jonas Korlach highlights how multi-kilobase reads from SMRT Sequencing can resolve many of the previously considered ‘difficult-to-sequence’ genomic regions. The long reads also allow phasing of the sequence information along the maternal and paternal alleles, demonstrated by full-length, fully phased HLA class I & II gene sequencing. In addition, characterizing the complex landscape of alternative gene products is currently very difficult with short-read sequencing technologies, and he describes how long-read, full-length mRNA sequencing can be used to describe the diversity of transcript isoforms, with no assembly required. Lastly, in the exciting area of…
Mike Snyder from Stanford University has published recent papers in Nature Biotechnology and PNAS using SMRT Sequencing for transcriptome analysis and demonstrated that long reads enable full coverage of RNA molecules. He discusses that work and his views on long-read sequencing and transcriptomics in this podcast.
In this ASHG 2016 poster video, Martin Pollard from the Wellcome Trust Sanger Institute and the University of Cambridge describes an ambitious project to better represent natural variation in the complex MHC region by sequencing the locus in thousands of people from various populations in Africa. A pilot project in five populations has already revealed a lot of diversity in the region, which is important for human disease, vaccine response, and organ transplantation. Pollard says SMRT Sequencing is the only technology that can deliver the full-length haplotypes necessary to identify complete variation in this highly polymorphic complex. Plus: plans to…
PacBio’s Jenny Ekholm presents this ASHG 2016 poster on a new method being developed that enriches for unamplified DNA and uses SMRT Sequencing to characterize repeat expansion disorders. Incorporating the CRISPR/Cas9 system to target specific genes allows for amplification-free enrichment to preserve epigenetic information and avoid PCR bias. Internal studies have shown that the approach can successfully be used to target and sequence the CAG repeat responsible for Huntington’s disease, the repeat associated with ALS, and more. The approach allows for pooling many samples and sequencing with a single SMRT Cell.
In this ASHG 2016 virtual poster, Flora Tassone from UC Davis describes her study of the molecular mechanisms linked to fragile X syndrome and associated disorders, such as FXTAS. She is using SMRT Sequencing to resolve the FMR1 gene in premutation carriers because it’s the only technology that can generate full-length transcripts with the causative CGG repeat expansion. Plus: direct confirmation of predicted isoform configurations.
Melissa Laird Smith discussed how the Icahn School of Medicine at Mount Sinai uses long-read sequencing for translational research. She gave several examples of targeted sequencing projects run on the Sequel System including CYP2D6, phased mutations of GLA in Fabry’s disease, structural variation breakpoint validation in glioblastoma, and full-length immune profiling of TCR sequences.
Michael Lutz, from the Duke University Medical Center, discussed a recently published software tool that can now be used in a pipeline with SMRT Sequencing data to find structural variant biomarkers for neurodegenerative diseases with a focus on Alzheimer’s disease, ALS, and Lewy body dementia. His team is particularly interested in short sequence repeats and short tandem repeats, which have already been implicated in neurodegenerative disease.
In a talk at AGBT 2017, Histogenetics CEO Nezih Cereb reported on how SMRT Sequencing is allowing his team to produce full-length, phased sequences for HLA alleles, which are important for matching organ transplants to recipients. The company is typing thousands of samples per day on their PacBio RS II systems and their new Sequel System. Cereb noted that SMRT Sequencing is unique in its ability to reliably phase mutations in the HLA alleles without imputation. Cereb concluded with his plans to use this approach for other complex regions, such as KIR, and announced their continued increasing HLA typing capacity…
SMRT Sequencing is a DNA sequencing technology characterized by long read lengths and high consensus accuracy, regardless of the sequence complexity or GC content of the DNA sample. These characteristics can be harnessed to address medically relevant genes, mRNA transcripts, and other genomic features that are otherwise difficult or impossible to resolve. I will describe examples for such new clinical research in diverse areas, including full-length gene sequencing with allelic haplotype phasing, gene/pseudogene discrimination, sequencing extreme DNA contexts, high-resolution pharmacogenomics, biomarker discovery, structural variant resolution, full-length mRNA isoform cataloging, and direct methylation detection.
In this AGBT 2017 poster, Ulf Gyllensten from Uppsala University presents two local reference genomes generated with PacBio and Bionano Genomics data. These assemblies include structural variation and repetitive regions that have been missed with previous short-read efforts, including some new genes not annotated in the human reference genome.
In this Webinar, we will give an introduction to Pacific Biosciences’ single molecule, real-time (SMRT) sequencing. After showing how the system works, we will discuss the main features of the technology with an emphasis on the difference between systematic error and random error and how SMRT sequencing produces better consensus accuracy than other systems. Following this, we will discuss several ground-breaking discoveries in medical science that were made possible by the longs reads and high accuracy of SMRT Sequencing.
In this AGBT 2017 talk, PacBio CSO Jonas Korlach provided a technology roadmap for the Sequel System, including plans the continue performance and throughput increases through early 2019. Per SMRT Cell throughput of the Sequel System is expected to double this year and again next year. Together with a new higher-capacity SMRT Cell expected to be released by the end of 2018, these improvements result in a ~30-fold increase or ~150 Gb / SMRT Cell allowing a real $1000 real de novo human genome assembly. Also discussed: Additional application protocol improvements, new chemistry and software updates, and a look at…