June 1, 2021  |  

Allele-level sequencing and phasing of full-length HLA class I and II genes using SMRT Sequencing technology

The three classes of genes that comprise the MHC gene family are actively involved in determining donor-recipient compatibility for organ transplant, as well as susceptibility to autoimmune diseases via cross-reacting immunization. Specifically, Class I genes HLA-A, -B, -C, and class II genes HLA-DR, -DQ and -DP are considered medically important for genetic analysis to determine histocompatibility. They are highly polymorphic and have thousands of alleles implicated in disease resistance and susceptibility. The importance of full-length HLA gene sequencing for genotyping, detection of null alleles, and phasing is now widely acknowledged. While DNA-sequencing-based HLA genotyping has become routine, only 7% of the HLA genes have been characterized by allele-level sequencing, while 93% are still defined by partial sequences. The gold-standard Sanger sequencing technology is being quickly replaced by second-generation, high- throughput sequencing methods due to its inability to generate unambiguous phased reads from heterozygous alleles. However, although these short, high-throughput, clonal sequencing methods are better at heterozygous allele detection, they are inadequate at generating full-length haploid gene sequences. Thus, full-length gene sequencing from an enhancer-promoter region to a 3’UTR that includes phasing information without the need for imputation still remains a technological challenge. The best way to overcome these challenges is to sequence these genes with a technology that is clonal in nature and has the longest possible read lengths. We have employed Single Molecule Real-Time (SMRT) sequencing technology from Pacific Biosciences for sequencing full-length HLA class I and II genes.


June 1, 2021  |  

HLA sequencing using SMRT Technology – High resolution and high throughput HLA genotyping in a clinical setting

Sequence based typing (SBT) is considered the gold standard method for HLA typing. Current SBT methods are rather laborious and are prone to phase ambiguity problems and genotyping uncertainties. As a result, the NGS community is rapidly seeking to remedy these challenges, to produce high resolution and high throughput HLA sequencing conducive to a clinical setting. Today, second generation NGS technologies are limited in their ability to yield full length HLA sequences required for adequate phasing and identification of novel alleles. Here we present the use of single molecule real time (SMRT) sequencing as a means of determining full length/long HLA sequences. Moreover we reveal the scalability of this method through multiplexing approches and determine HLA genotyping calls through the use of third party Gendx NGSengine® software.


June 1, 2021  |  

Multiplexing human HLA class I & II genotyping with DNA barcode adapters for high throughput research.

Human MHC class I genes HLA-A, -B, -C, and class II genes HLA-DR, -DP and -DQ, play a critical role in the immune system as major factors responsible for organ transplant rejection. The have a direct or linkage-based association with several diseases, including cancer and autoimmune diseases, and are important targets for clinical and drug sensitivity research. HLA genes are also highly polymorphic and their diversity originates from exonic combinations as well as recombination events. A large number of new alleles are expected to be encountered if these genes are sequenced through the UTRs. Thus allele-level resolution is strongly preferred when sequencing HLA genes. Pacific Biosciences has developed a method to sequence the HLA genes in their entirety within the span of a single read taking advantage of long read lengths (average >10 kb) facilitated by SMRT technology. A highly accurate consensus sequence (=99.999 or QV50 demonstrated) is generated for each allele in a de novo fashion by our SMRT Analysis software. In the present work, we have combined this imputation-free, fully phased, allele-specific consensus sequence generation workflow and a newly developed DNA-barcode-tagged SMRTbell sample preparation approach to multiplex 96 individual samples for sequencing all of the HLA class I and II genes. Commercially available NGS-go reagents for full-length HLA class I and relevant exons of class II genes were amplified for hi-resolution HLA sequencing. The 96 samples included 72 that are part of UCLA reference panel and had pre-typing information available for 2 fields, based on gold standard SBT methods. SMRTbell adapters with 16 bp barcode tags were ligated to long amplicons in symmetric pairing. PacBio sequencing was highly effective in generating accurate, phased sequences of full-length alleles of HLA genes. In this work we demonstrate scalability of HLA sequencing using off the shelf assays for research applications to find biological significance in full-length sequencing.


June 1, 2021  |  

Access full spectrum of polymorphisms in HLA class I & II genes, without imputation for disease association and evolutionary research.

MHC class I and II genes are critically monitored by high-resolution sequencing for organ transplant decisions due to their role in GVHD. Their direct or linkage-based causal association, have increased their prominence as targets for drug sensitivity, autoimmune, cancer and infectious disease research. Monitoring HLA genes can however be tricky due to their highly polymorphic nature. Allele-level resolution is thus strongly preferred. However, most studies were historically focused on peptide binding domains of the HLA genes, due to technological challenges. As a result knowledge about the functional role of polymorphisms outside of exons 2 and 3 of HLA genes was rather limited. There are also relatively few full-length gene references currently available in the IMGT HLA database. This made it difficult to quickly adopt high-throughput reference-reliant methods for allele-level HLA sequencing. Increasing awareness regarding role of regulatory region polymorphisms of HLA genes in disease association1, nonetheless have brought about a revolution in full-length HLA gene sequencing. Researchers are now exploring ways to obtain complete information for HLA genes and integrate it with the current HLA database so it can be interpreted used by clinical researchers. We have explored advantages of SMRT Sequencing to obtain fully phased, allele-specific sequences of HLA class I and II genes for 96 samples using completely De novo consensus generation approach for imputation-free 4-field typing. With long read lengths (average >10 kb) and consensus accuracy exceeding 99.999% (Q50), a comprehensive snapshot of variants in exons, introns and UTRs could be obtained for spectrum of polymorphisms in phase across SNP-poor regions. Such information can provide invaluable insights in future causality association and population diversity research.


June 1, 2021  |  

Diploid genome assembly and comprehensive haplotype sequence reconstruction

Outside of the simplest cases (haploid, bacteria, or inbreds), genomic information is not carried in a single reference per individual, but rather has higher ploidy (n=>2) for almost all organisms. The existence of two or more highly related sequences within an individual makes it extremely difficult to build high quality, highly contiguous genome assemblies from short DNA fragments. Based on the earlier work on a polyploidy aware assembler, FALCON ( https://github.com/PacificBiosciences/FALCON) , we developed new algorithms and software (“FALCON-unzip”) for de novo haplotype reconstructions from SMRT Sequencing data. We generate two datasets for developing the algorithms and the prototype software: (1) whole genome sequencing data from a highly repetitive diploid fungal (Clavicorona pyxidata) and (2) whole genome sequencing data from an F1 hybrid from two inbred Arabidopsis strains: Cvi-0 and Col-0. For the fungal genome, we achieved an N50 of 1.53 Mb (of the 1n assembly contigs) of the ~42 Mb 1n genome and an N50 of the haplotigs (haplotype specific contigs) of 872 kb from a 95X read length N50 ~16 kb dataset. We found that ~ 45% of the genome was highly heterozygous and ~55% of the genome was highly homozygous. We developed methods to assess the base-level accuracy and local haplotype phasing accuracy of the assembly with short-read data from the Illumina® platform. For the ArabidopsisF1 hybrid genome, we found that 80% of the genome could be separated into haplotigs. The long range accuracy of phasing haplotigs was evaluated by comparing them to the assemblies from the two inbred parental lines. We show that a more complete view of all haplotypes could provide useful biological insights through improved annotation, characterization of heterozygous variants of all sizes, and resolution of differential allele expression. The current Falcon-Unzip method will lead to understand how to solve more difficult polyploid genome assembly problems and improve the computational efficiency for large genome assemblies. Based on this work, we can develop a pipeline enabling routinely assemble diploid or polyploid genomes as haplotigs, representing a comprehensive view of the genomes that can be studied with the information at hand.


June 1, 2021  |  

Haplotyping of full-length transcript reads from long-read sequencing can reveal allelic imbalances in isoform expression

The Pacific Biosciences Iso-Seq method, which can produce high-quality isoform sequences of 10 kb and longer, has been used to annotate many important plant and animal genomes. Here, we develop an algorithm called IsoPhase that postprocesses Iso-Seq data to retrieve allele specific isoform information. Using simulated data, we show that for both diploid and tetraploid genomes, IsoPhase results in good SNP recovery with low FDR at error rates consistent with CCS reads. We apply IsoPhase to a haplotyperesolved genome assembly and multiple fetal tissue Iso-Seq dataset from a F1 cross of Angus x Brahman cattle subspecies. IsoPhase-called haplotypes were validated by the phased assembly and demonstrate the potential for revealing allelic imbalances in isoform expression.


June 1, 2021  |  

Full-length transcript profiling with the Iso-Seq method for improved genome annotations

Incomplete annotation of genomes represents a major impediment to understanding biological processes, functional differences between species, and evolutionary mechanisms. Often, genes that are large, embedded within duplicated genomic regions, or associated with repeats are difficult to study by short-read expression profiling and assembly. In addition, most genes in eukaryotic organisms produce alternatively spliced isoforms, broadening the diversity of proteins encoded by the genome, which are difficult to resolve with short-read methods. Short-read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. In contrast, Single Molecule, Real-Time (SMRT) Sequencing directly sequences full-length transcripts without the need for assembly and imputation. Here we apply the Iso-Seq method (long-read RNA sequencing) to detect full-length isoforms and the new IsoPhase algorithm to retrieve allele-specific isoform information for two avian models of vocal learning, Anna’s hummingbird (Calypte anna) and zebra finch (Taeniopygia guttata).


June 1, 2021  |  

Haplotyping using full-length transcript sequencing reveals allele-specific expression

An important need in analyzing complex genomes is the ability to separate and phase haplotypes. While whole genome assembly can deliver this information, it cannot reveal whether there is allele-specific gene or isoform expression. The PacBio Iso-Seq method, which can produce high-quality transcript sequences of 10 kb and longer, has been used to annotate many important plant and animal genomes. We present an algorithm called IsoPhase that post-processes Iso-Seq data for transcript-based haplotyping. We applied IsoPhase to a maize Iso-Seq dataset consisting of two homozygous parents and two F1 cross hybrids. We validated the majority of the SNPs called with IsoPhase against matching short read data and identified cases of allele-specific, gene-level and isoform-level expression.


June 1, 2021  |  

A complete solution for high-quality genome annotation using the PacBio Iso-Seq method

The PacBio Iso-Seq method produces high-quality, full-length transcripts of up to 10 kb and longer and has been used to annotate many important plant and animal genomes. We describe here the full Iso-Seq ecosystem that enables researchers to achieve high-quality genome annotations. The Iso-Seq Express workflow is a 1-day protocol that requires only 60-300 ng of total RNA and supports multiplexing of different tissues. Sequencing on a single SMRT Cell 8M on the Sequel II System produces up to 4 million full-length reads, sufficient to exhaustively characterize a whole transcriptome on the order of 15,000-17,000 genes with 100,000 or more transcripts. Most importantly, the method is supported by a maturing suite of official and community-developed tools. The SMRT Link Iso-Seq application outputs high-quality (>99% accurate), full-length transcript sequences that can optionally be mapped to a reference genome for a single SMRT Cell worth of data in 6-9 hours. For example, the SQANTI2 tool classifies Iso-Seq transcripts against a reference annotation, filters potential library artifacts, and processes information from both long read-only and short read-based quantification. IsoPhase is a tool for identifying allele-specific isoform expression. Cogent has been used to process Iso-Seq transcripts in a genome-independent manner to assess genome assemblies. Finally, IsoAnnot is an up-and-coming tool for identifying differential isoform expression across different samples. We describe how these tools complement each other and provide guidelines to make the best use out of Iso-Seq data for understanding transcriptomes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.