Menu
July 7, 2019  |  

Complete genome sequence of the Arcobacter marinus type strain JCM 15502.

Arcobacter species are often recovered from marine environments and are isolated from both seawater and shellfish. Arcobacter marinus was recovered from the homogenate of a sample containing surface seawater, seaweed, and a star- fish. This study describes the whole-genome sequence of the A. marinus type strain JCM 15502 (= CL-S1T = KCCM 90072T).


July 7, 2019  |  

Complete genome sequence of lanthionine-producing Lactobacillus brevis strain 100D8, generated by PacBio sequencing.

Lactobacillus brevis strain 100D8 was isolated from rye silage and showed rapid acidification ability in vitro and antifungal activity against mycotoxin- producing fungi. We report here the complete genome sequence of L. brevis strain 100D8, which has a circular chromosome (2,351,988 bp, 2,304 coding sequences [CDSs]) and three plasmids (45,061 bp, 57 CDSs; 40,740 bp, 40 CDSs; and 39,943 bp, 57 CDSs).


July 7, 2019  |  

Complete genome sequence of the Arcobacter molluscorum type strain LMG 25693.

As components of freshwater and marine microflora, Arcobacter spp. are often recovered from shellfish, such as mussels, clams, and oysters. Arcobacter mol- luscorum was isolated from mussels from the Ebro Delta in Catalonia, Spain. This ar- ticle describes the whole-genome sequence of the A. molluscorum strain LMG 25693T(= F98-3T= CECT 7696T).


July 7, 2019  |  

Genome-wide characterization and phylogenetic analysis of GSK gene family in three species of cotton: evidence for a role of some GSKs in fiber development and responses to stress

Background: The glycogen synthase kinase 3/shaggy kinase (GSK3) is a serine/threonine kinase with important roles in animals. Although GSK3 genes have been studied for more than 30years, plant GSK genes have been studied only since the last decade. Previous research has confirmed that plant GSK genes are involved in diverse processes, including floral development, brassinosteroid signaling, and responses to abiotic stresses. Result: In this study, 20, 15 (including 5 different transcripts) and 10 GSK genes were identified in G. hirsutum, G. raimondii and G. arboreum, respectively. A total of 65 genes from Arabidopsis, rice, and cotton were classified into 4 clades. High similarities were found in GSK3 protein sequences, conserved motifs, and gene structures, as well as good concordance in gene pairwise comparisons (G. hirsutum vs. G. arboreum, G. hirsutum vs. G. raimondii, and G. arboreum vs. G. raimondii) were observed. Whole genome duplication (WGD) within At and Dt sub-genomes has been central to the expansion of the GSK gene family. Furthermore, GhSK genes showed diverse expression patterns in various tissues. Additionally, the expression profiles of GhSKs under different stress treatments demonstrated that many are stress-responsive genes. However, none were induced by brassinolide treatment. Finally, nine co-expression sub- networks were observed for GhSKs and the functional annotations of these genes suggested that some GhSKs might be involved in cotton fiber development. Conclusion: In this present work, we identified 45 GSK genes from three cotton species, which were divided into four clades. The gene features, muti-alignment, conversed motifs, and syntenic blocks indicate that they have been highly conserved during evolution. Whole genome duplication was determined to be the dominant factor for GSK gene family expansion. The analysis of co-expressed sub-networks and tissue-specific expression profiles suggested functions of GhSKs during fiber development. Moreover, their different responses to various abiotic stresses indicated great functional diversity amongst the GhSKs. Briefly, data presented herein may serve as the basis for future functional studies of GhSKs.


July 7, 2019  |  

Complete genome sequence of the Arcobacter suis type strain LMG 26152.

Arcobacter species are prevalent in pigs, and strains have been isolated from pig feces and pork meat; some Arcobacter strains may be porcine abortifacients. Arcobacter suis was recovered from pork meat in Spain. This study describes the whole-genome sequence of the A. suis type strain LMG 26152 (=F41T =CECT 7833T).


July 7, 2019  |  

Deciphering mixotrophic Clostridium formicoaceticum metabolism and energy conservation: Genomic analysis and experimental studies.

Clostridium formicoaceticum, a Gram-negative mixotrophic homoacetogen, produces acetic acid as the sole metabolic product from various carbon sources, including fructose, glycerol, formate, and CO2. Its genome of 4.59-Mbp contains a highly conserved Wood-Ljungdahl pathway gene cluster with the same layout as that in other mixotrophic acetogens, including Clostridium aceticum, Clostridium carboxidivorans, and Clostridium ljungdahlii. For energy conservation, C. formicoaceticum does not have all the genes required for the synthesis of cytochrome or quinone used for generating proton gradient in H+-dependent acetogens such as Moorella thermoacetica; instead, it has the Rnf system and a Na+-translocating ATPase similar to the one in Acetobacterium woodii. Its growth in both heterotrophic and autotrophic media were dependent on the sodium concentration. C. formicoaceticum has genes encoding acetaldehyde dehydrogenases, alcohol dehydrogenases, and aldehyde oxidoreductases, which could convert acetyl-CoA and acetate to ethanol and butyrate to butanol under excessive reducing equivalent conditions. Copyright © 2018 Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.