fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Genetic basis for the establishment of endosymbiosis in Paramecium.

The single-celled ciliate Paramecium bursaria is an indispensable model for investigating endosymbiosis between protists and green-algal symbionts. To elucidate the mechanism of this type of endosymbiosis, we combined PacBio and Illumina sequencing to assemble a high-quality and near-complete macronuclear genome of P. bursaria. The genomic characteristics and phylogenetic analyses indicate that P. bursaria is the basal clade of the Paramecium genus. Through comparative genomic analyses with its close relatives, we found that P. bursaria encodes more genes related to nitrogen metabolism and mineral absorption, but encodes fewer genes involved in oxygen binding and N-glycan biosynthesis. A comparison of the transcriptomic…

Read More »

Tuesday, April 21, 2020

Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards.

Monitor lizards are unique among ectothermic reptiles in that they have high aerobic capacity and distinctive cardiovascular physiology resembling that of endothermic mammals. Here, we sequence the genome of the Komodo dragon Varanus komodoensis, the largest extant monitor lizard, and generate a high-resolution de novo chromosome-assigned genome assembly for V. komodoensis using a hybrid approach of long-range sequencing and single-molecule optical mapping. Comparing the genome of V. komodoensis with those of related species, we find evidence of positive selection in pathways related to energy metabolism, cardiovascular homoeostasis, and haemostasis. We also show species-specific expansions of a chemoreceptor gene family related…

Read More »

Tuesday, April 21, 2020

Genomic Characterization of a Newly Isolated Rhizobacteria Sphingomonas panacis Reveals Plant Growth Promoting Effect to Rice

This article reports the full genome sequence of Sphingomonas panacis DCY99T (=KCTC 42347T =JCM30806T), which is a Gram-negative rod-shaped, non-spore forming, motile bacterium isolated from rusty ginseng root in South Korea. A draft genome of S. panacis DCY99T and a single circular plasmid were generated using the PacBio platform. Antagonistic activity experiment showed S. panacis DCY99T has the plant growth promoting effect. Thus, the genome sequence of S. panacis DCY99T may contribute to biotechnological application of the genus Sphingomonas in agriculture.

Read More »

Tuesday, April 21, 2020

Paraburkholderia dokdonella sp. nov., isolated from a plant from the genus Campanula.

The novel Gram-stain-negative, rod-shaped, aerobic bacterial strain DCR-13T was isolated from a native plant belonging to the genus Campanula on Dokdo, an island in the Republic of Korea. Comparative analysis of the 16S rRNA gene sequence indicated that this strain is closely related to Paraburkholderia peleae PP52-1T (98.43% 16S rRNA gene sequence similarity), Paraburkholderia oxyphila NBRC 105797T (98.42%), Paraburkholderia sacchari IPT 101T (98.28%), Paraburkholderia mimosarum NBRC 106338T (97.80%), Paraburkholderia denitrificans KIS30-44T (97.46%), and Paraburkholderia paradise WAT (97.45%). This analysis of the 16S rRNA gene sequence also suggested that DCR-13T and the six closely related strains formed a clade within the…

Read More »

Tuesday, April 21, 2020

Characterization of a catalase from red-lip mullet (Liza haematocheila): Demonstration of antioxidative activity and mRNA upregulation in response to immunostimulants.

Reactive oxygen species, generated in all the aerobic organisms, can cause oxidative stress. Excessive ROS may become a source of carcinogen due to DNA damage, lipid peroxidation, cell injury, and cell death. In order to prevent these adverse effects of ROS, antioxidant enzymes have evolved in aerobic organisms. Catalase is a major antioxidant enzyme that breaks down excessive H2O2 and inhibits apoptotic cell death. Here we molecularly characterized catalase from red-lip mullet. The cDNA sequence of LhCAT consists of an ORF of 1545?bp, which encodes a 527 amino acid peptide (~60?kDa). Based on bioinformatics analysis, LhCAT possesses a domain architecture…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of a novel aerobic denitrifying strain, Pseudomonas monteilii CY06

A novel aerobic denitrifying isolate CY06 was obtained from the Western Pacific Ocean, and it was identified as Pseudomonas monteilii. In this study, we present the complete genome sequence of strain CY06. The genome has one circular chromosome of 5,774,879?bp, with an average G?+?C content of 61.00%, and 3319 coding sequences. According to the annotation analysis, strain CY06 encodes 22 proteins related to nitrogen metabolism. It is found that CY06 has promising denitrification capacity, revealing its potential for practical use regarding N-removal applications.

Read More »

Tuesday, April 21, 2020

Comparative genome analysis provides novel insight into the interaction of Aquimarina sp. AD1, BL5 and AD10 with their macroalgal host.

The Aquimarina genus is widely distributed throughout the marine environment, however little is understood regarding its ecological role, particularly when in association with eukaryotic hosts. Here, we examine the genomes of two opportunistic pathogens, Aquimarina sp. AD1 and BL5, and a non-pathogenic strain Aquimarina sp. AD10, that were isolated from diseased individuals of the red alga Delisea pulchra. Each strain encodes multiple genes for the degradation of marine carbohydrates and vitamin biosynthesis. These traits are hypothesised to promote nutrient exchange between the Aquimarina strains and their algal host, facilitating a close symbiotic relationship. Moreover, each strain harbours the necessary genes…

Read More »

Tuesday, April 21, 2020

Genome-wide systematic identification of methyltransferase recognition and modification patterns.

Genome-wide analysis of DNA methylation patterns using single molecule real-time DNA sequencing has boosted the number of publicly available methylomes. However, there is a lack of tools coupling methylation patterns and the corresponding methyltransferase genes. Here we demonstrate a high-throughput method for coupling methyltransferases with their respective motifs, using automated cloning and analysing the methyltransferases in vectors carrying a strain-specific cassette containing all potential target sites. To validate the method, we analyse the genomes of the thermophile Moorella thermoacetica and the mesophile Acetobacterium woodii, two acetogenic bacteria having substantially modified genomes with 12 methylation motifs and a total of 23…

Read More »

Tuesday, April 21, 2020

Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri.

The present study investigated the species level based microbial community and metabolome in corn silage inoculated with or without homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri using the PacBio SMRT Sequencing and time-of-flight mass spectrometry (GC-TOF/MS). Chopped whole crop corn was treated with (1) deionized water (control), (2) Lactobacillus plantarum, or (3) Lactobacillus buchneri. The chopped whole crop corn was ensiled in vacuum-sealed polyethylene bags containing 300 g of fresh forge for 90 days, with three replicates for each treatment. The results showed that a total of 979 substances were detected, and 316 different metabolites were identified. Some metabolites with…

Read More »

Tuesday, April 21, 2020

Arcobacter cryaerophilus Isolated From New Zealand Mussels Harbor a Putative Virulence Plasmid.

A wide range of Arcobacter species have been described from shellfish in various countries but their presence has not been investigated in Australasia, in which shellfish are a popular delicacy. Since several arcobacters are considered to be emerging pathogens, we undertook a small study to evaluate their presence in several different shellfish, including greenshell mussels, oysters, and abalone (paua) in New Zealand. Arcobacter cryaerophilus, a species associated with human gastroenteritis, was the only species isolated, from greenshell mussels. Whole-genome sequencing revealed a range of genomic traits in these strains that were known or associated virulence factors. Furthermore, we describe the…

Read More »

Tuesday, April 21, 2020

Comparative Genomics of Thiohalobacter thiocyanaticus HRh1T and Guyparkeria sp. SCN-R1, Halophilic Chemolithoautotrophic Sulfur-Oxidizing Gammaproteobacteria Capable of Using Thiocyanate as Energy Source.

The genomes of Thiohalobacter thiocyanaticus and Guyparkeria (formerly known as Halothiobacillus) sp. SCN-R1, two gammaproteobacterial halophilic sulfur-oxidizing bacteria (SOB) capable of thiocyanate oxidation via the “cyanate pathway”, have been analyzed with a particular focus on their thiocyanate-oxidizing potential and sulfur oxidation pathways. Both genomes encode homologs of the enzyme thiocyanate dehydrogenase (TcDH) that oxidizes thiocyanate via the “cyanate pathway” in members of the haloalkaliphilic SOB of the genus Thioalkalivibrio. However, despite the presence of conservative motives indicative of TcDH, the putative TcDH of the halophilic SOB have a low overall amino acid similarity to the Thioalkalivibrio enzyme, and also the…

Read More »

Tuesday, April 21, 2020

Complete genome sequence analysis of the thermoacidophilic verrucomicrobial methanotroph “Candidatus Methylacidiphilum kamchatkense” strain Kam1 and comparison with its closest relatives.

The candidate genus “Methylacidiphilum” comprises thermoacidophilic aerobic methane oxidizers belonging to the Verrucomicrobia phylum. These are the first described non-proteobacterial aerobic methane oxidizers. The genes pmoCAB, encoding the particulate methane monooxygenase do not originate from horizontal gene transfer from proteobacteria. Instead, the “Ca. Methylacidiphilum” and the sister genus “Ca. Methylacidimicrobium” represent a novel and hitherto understudied evolutionary lineage of aerobic methane oxidizers. Obtaining and comparing the full genome sequences is an important step towards understanding the evolution and physiology of this novel group of organisms.Here we present the closed genome of “Ca. Methylacidiphilum kamchatkense” strain Kam1 and a comparison with…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of the Sulfodiicoccus acidiphilus strain HS-1T, the first crenarchaeon that lacks polB3, isolated from an acidic hot spring in Ohwaku-dani, Hakone, Japan.

Sulfodiicoccus acidiphilus HS-1T is the type species of the genus Sulfodiicoccus, a thermoacidophilic archaeon belonging to the order Sulfolobales (class Thermoprotei; phylum Crenarchaeota). While S. acidiphilus HS-1T shares many common physiological and phenotypic features with other Sulfolobales species, the similarities in their 16S rRNA gene sequences are less than 89%. In order to know the genomic features of S. acidiphilus HS-1T in the order Sulfolobales, we determined and characterized the genome of this strain.The circular genome of S. acidiphilus HS-1T is comprised of 2353,189 bp with a G+C content of 51.15 mol%. A total of 2459 genes were predicted, including 2411 protein…

Read More »

Tuesday, April 21, 2020

A First Study of the Virulence Potential of a Bacillus subtilis Isolate From Deep-Sea Hydrothermal Vent.

Bacillus subtilis is the best studied Gram-positive bacterium, primarily as a model of cell differentiation and industrial exploitation. To date, little is known about the virulence of B. subtilis. In this study, we examined the virulence potential of a B. subtilis strain (G7) isolated from the Iheya North hydrothermal field of Okinawa Trough. G7 is aerobic, motile, endospore-forming, and requires NaCl for growth. The genome of G7 is composed of one circular chromosome of 4,216,133 base pairs with an average GC content of 43.72%. G7 contains 4,416 coding genes, 27.5% of which could not be annotated, and the remaining 72.5%…

Read More »

Tuesday, April 21, 2020

Adaptive Strategies in a Poly-Extreme Environment: Differentiation of Vegetative Cells in Serratia ureilytica and Resistance to Extreme Conditions.

Poly-extreme terrestrial habitats are often used as analogs to extra-terrestrial environments. Understanding the adaptive strategies allowing bacteria to thrive and survive under these conditions could help in our quest for extra-terrestrial planets suitable for life and understanding how life evolved in the harsh early earth conditions. A prime example of such a survival strategy is the modification of vegetative cells into resistant resting structures. These differentiated cells are often observed in response to harsh environmental conditions. The environmental strain (strain Lr5/4) belonging to Serratia ureilytica was isolated from a geothermal spring in Lirima, Atacama Desert, Chile. The Atacama Desert is…

Read More »

1 2 3 4 5

Subscribe for blog updates:

Archives