June 1, 2021  |  

Low-input long-read sequencing for complete microbial genomes and metagenomic community analysis

Microbial genome sequencing can be done quickly, easily, and efficiently with the PacBio sequencing instruments, resulting in complete de novo assemblies. Alternative protocols have been developed to reduce the amount of purified DNA required for SMRT Sequencing, to broaden applicability to lower-abundance samples. If 50-100 ng of microbial DNA is available, a 10-20 kb SMRTbell library can be made. The resulting library can be loaded onto multiple SMRT Cells, yielding more than enough data for complete assembly of microbial genomes using the SMRT Portal assembly program HGAP, plus base modification analysis. The entire process can be done in less than 3 days by standard laboratory personnel. This approach is particularly important for analysis of metagenomic communities, in which genomic DNA is often limited. From these samples, full-length 16S amplicons can be generated, prepped with the standard SMRTbell library prep protocol, and sequenced. Alternatively, a 2 kb sheared library, made from a few ng of input DNA, can also be used to elucidate the microbial composition of a community, and may provide information about biochemical pathways present in the sample. In both these cases, 1-2 kb reads with >99.9% accuracy can be obtained from Circular Consensus Sequencing.


June 1, 2021  |  

Profiling complex population genomes with highly accurate single molecule reads: cow rumen microbiomes

Determining compositions and functional capabilities of complex populations is often challenging, especially for sequencing technologies with short reads that do not uniquely identify organisms or genes. Long-read sequencing improves the resolution of these mixed communities, but adoption for this application has been limited due to concerns about throughput, cost and accuracy. The recently introduced PacBio Sequel System generates hundreds of thousands of long and highly accurate single-molecule reads per SMRT Cell. We investigated how the Sequel System might increase understanding of metagenomic communities. In the past, focus was largely on taxonomic classification with 16S rRNA sequencing. Recent expansion to WGS sequencing enables functional profiling as well, with the ultimate goal of complete genome assemblies. Here we compare the complex microbiomes in 5 cow rumen samples, for which Illumina WGS sequence data was also available. To maximize the PacBio single-molecule sequence accuracy, libraries of 2 to 3 kb were generated, allowing many polymerase passes per molecule. The resulting reads were filtered at predicted single-molecule accuracy levels up to 99.99%. Community compositions of the 5 samples were compared with Illumina WGS assemblies from the same set of samples, indicating rare organisms were often missed with Illumina. Assembly from PacBio CCS reads yielded a contig >100 kb in length with 6-fold coverage. Mapping of Illumina reads to the 101 kb contig verified the PacBio assembly and contig sequence. These results illustrate ways in which long accurate reads benefit analysis of complex communities.


June 1, 2021  |  

Profiling complex communities with highly accurate single molecule reads: cow rumen microbiomes

Determining compositions and functional capabilities of complex populations is often challenging, especially for sequencing technologies with short reads that do not uniquely identify organisms or genes. Long-read sequencing improves the resolution of these mixed communities, but adoption for this application has been limited due to concerns about throughput, cost and accuracy. The recently introduced PacBio Sequel System generates hundreds of thousands of long and highly accurate single-molecule reads per SMRT Cell. We investigated how the Sequel System might increase understanding of metagenomic communities. In the past, focus was largely on taxonomic classification with 16S rRNA sequencing. Recent expansion to WGS sequencing enables functional profiling as well, with the ultimate goal of complete genome assemblies. Here we compare the complex microbiomes in 5 cow rumen samples, for which Illumina WGS sequence data was also available. To maximize the PacBio single-molecule sequence accuracy, libraries of 2 to 3 kb were generated, allowing many polymerase passes per molecule. The resulting reads were filtered at predicted single-molecule accuracy levels up to 99.99%. Community compositions of the 5 samples were compared with Illumina WGS assemblies from the same set of samples, indicating rare organisms were often missed with Illumina. Assembly from PacBio CCS reads yielded a contig >100 kb in length with 6-fold coverage. Mapping of Illumina reads to the 101 kb contig verified the PacBio assembly and contig sequence. Scaffolding with reads from a PacBio unsheared library produced a complete genome of 2.4 Mb. These results illustrate ways in which long accurate reads benefit analysis of complex communities.


June 1, 2021  |  

A simple segue from Sanger to high-throughput SMRT Sequencing with a M13 barcoding system

High-throughput NGS methods are increasingly utilized in the clinical genomics market. However, short-read sequencing data continues to remain challenged by mapping inaccuracies in low complexity regions or regions of high homology and may not provide adequate coverage within GC-rich regions of the genome. Thus, the use of Sanger sequencing remains popular in many clinical sequencing labs as the gold standard approach for orthogonal validation of variants and to interrogate missed regions poorly covered by second-generation sequencing. The use of Sanger sequencing can be less than ideal, as it can be costly for high volume assays and projects. Additionally, Sanger sequencing generates read lengths shorter than the region of interest, which limits its ability to accurately phase allelic variants. High-throughput SMRT Sequencing overcomes the challenges of both the first- and second-generation sequencing methods. PacBio’s long read capability allows sequencing of full-length amplicons


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.