X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Comparative Annotation Toolkit (CAT)-simultaneous clade and personal genome annotation.

The recent introductions of low-cost, long-read, and read-cloud sequencing technologies coupled with intense efforts to develop efficient algorithms have made affordable, high-quality de novo sequence assembly a realistic proposition. The result is an explosion of new, ultracontiguous genome assemblies. To compare these genomes, we need robust methods for genome annotation. We describe the fully open source Comparative Annotation Toolkit (CAT), which provides a flexible way to simultaneously annotate entire clades and identify orthology relationships. We show that CAT can be used to improve annotations on the rat genome, annotate the great apes, annotate a diverse set of mammals, and annotate…

Read More »

Sunday, September 22, 2019

Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress.

Arabidopsis pumila is native to the desert region of northwest China and it is extraordinarily well adapted to the local semi-desert saline soil, thus providing a candidate plant system for environmental adaptation and salt-tolerance gene mining. However, understanding of the salt-adaptation mechanism of this species is limited because of genomic sequences scarcity. In the present study, the transcriptome profiles of A. pumila leaf tissues treated with 250 mM NaCl for 0, 0.5, 3, 6, 12, 24 and 48 h were analyzed using a combination of second-generation sequencing (SGS) and third-generation single-molecule real-time (SMRT) sequencing.Correction of SMRT long reads by SGS short reads…

Read More »

Sunday, September 22, 2019

The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen.

We have explored the importance of the phyllosphere microbiome in plant resistance in the cuticle mutants bdg (BODYGUARD) or lacs2.3 (LONG CHAIN FATTY ACID SYNTHASE 2) that are strongly resistant to the fungal pathogen Botrytis cinerea. The study includes infection of plants under sterile conditions, 16S ribosomal DNA sequencing of the phyllosphere microbiome, and isolation and high coverage sequencing of bacteria from the phyllosphere. When inoculated under sterile conditions bdg became as susceptible as wild-type (WT) plants whereas lacs2.3 mutants retained the resistance. Adding washes of its phyllosphere microbiome could restore the resistance of bdg mutants, whereas the resistance of…

Read More »

Sunday, September 22, 2019

Ecological genomics of tropical trees: how local population size and allelic diversity of resistance genes relate to immune responses, cosusceptibility to pathogens, and negative density dependence

In tropical forests, rarer species show increased sensitivity to species-specific soil pathogens and more negative effects of conspecific density on seedling survival (NDD). These patterns suggest a connection between ecology and immunity, perhaps because small population size disproportionately reduces genetic diversity of hyperdiverse loci such as immunity genes. In an experiment examining seedling roots from six species in one tropical tree community, we found that smaller populations have reduced amino acid diversity in pathogen resistance (R) genes but not the transcriptome in general. Normalized R gene amino acid diversity varied with local abundance and prior measures of differences in sensitivity…

Read More »

Sunday, September 22, 2019

Circular RNA architecture and differentiation during leaf bud to young leaf development in tea (Camellia sinensis).

Circular RNA (circRNA) discovery, expression patterns and experimental validation in developing tea leaves indicates its correlation with circRNA-parental genes and potential roles in ceRNA interaction network. Circular RNAs (circRNAs) have recently emerged as a novel class of abundant endogenous stable RNAs produced by circularization with regulatory potential. However, identification of circRNAs in plants, especially in non-model plants with large genomes, is challenging. In this study, we undertook a systematic identification of circRNAs from different stage tissues of tea plant (Camellia sinensis) leaf development using rRNA-depleted circular RNA-seq. By combining two state-of-the-art detecting tools, we characterized 3174 circRNAs, of which 342…

Read More »

Sunday, September 22, 2019

Identification and analysis of glutathione S-transferase gene family in sweet potato reveal divergent GST-mediated networks in aboveground and underground tissues in response to abiotic stresses.

Sweet potato, a hexaploid species lacking a reference genome, is one of the most important crops in many developing countries, where abiotic stresses are a primary cause of reduction of crop yield. Glutathione S-transferases (GSTs) are multifunctional enzymes that play important roles in oxidative stress tolerance and cellular detoxification.A total of 42 putative full-length GST genes were identified from two local transcriptome databases and validated by molecular cloning and Sanger sequencing. Sequence and intraspecific phylogenetic analyses revealed extensive differentiation in their coding sequences and divided them into eight subfamilies. Interspecific phylogenetic and comparative analyses indicated that most examined GST paralogs…

Read More »

Sunday, September 22, 2019

PacBio sequencing and its applications.

Single-molecule, real-time sequencing developed by Pacific BioSciences offers longer read lengths than the second-generation sequencing (SGS) technologies, making it well-suited for unsolved problems in genome, transcriptome, and epigenetics research. The highly-contiguous de novo assemblies using PacBio sequencing can close gaps in current reference assemblies and characterize structural variation (SV) in personal genomes. With longer reads, we can sequence through extended repetitive regions and detect mutations, many of which are associated with diseases. Moreover, PacBio transcriptome sequencing is advantageous for the identification of gene isoforms and facilitates reliable discoveries of novel genes and novel isoforms of annotated genes, due to its…

Read More »

Sunday, September 22, 2019

Global identification of the full-length transcripts and alternative splicing related to phenolic acid biosynthetic genes in Salvia miltiorrhiza.

Salvianolic acids are among the main bioactive components in Salvia miltiorrhiza, and their biosynthesis has attracted widespread interest. However, previous studies on the biosynthesis of phenolic acids using next-generation sequencing platforms are limited with regard to the assembly of full-length transcripts. Based on hybrid-seq (next-generation and single molecular real-time sequencing) of the S. miltiorrhiza root transcriptome, we experimentally identified 15 full-length transcripts and four alternative splicing events of enzyme-coding genes involved in the biosynthesis of rosmarinic acid. Moreover, we herein demonstrate that lithospermic acid B accumulates in the phloem and xylem of roots, in agreement with the expression patterns of…

Read More »

Sunday, September 22, 2019

Generation and comparative analysis of full-length transcriptomes in sweetpotato and its putative wild ancestor I. trifida.

Sweetpotato [Ipomoea batatas (L.) Lam.] is one of the most important crops in many developing countries and provides a candidate source of bioenergy. However, neither high-quality reference genome nor large-scale full-length cDNA sequences for this outcrossing hexaploid are still lacking, which in turn impedes progress in research studies in sweetpotato functional genomics and molecular breeding. In this study, we apply a combination of second- and third-generation sequencing technologies to sequence full-length transcriptomes in sweetpotato and its putative ancestor I. trifida. In total, we obtained 53,861/51,184 high-quality transcripts, which includes 34,963/33,637 putative full-length cDNA sequences, from sweetpotato/I. trifida. Amongst, we identified…

Read More »

Sunday, September 22, 2019

MUMmer4: A fast and versatile genome alignment system.

The MUMmer system and the genome sequence aligner nucmer included within it are among the most widely used alignment packages in genomics. Since the last major release of MUMmer version 3 in 2004, it has been applied to many types of problems including aligning whole genome sequences, aligning reads to a reference genome, and comparing different assemblies of the same genome. Despite its broad utility, MUMmer3 has limitations that can make it difficult to use for large genomes and for the very large sequence data sets that are common today. In this paper we describe MUMmer4, a substantially improved version…

Read More »

Sunday, September 22, 2019

Aberration or analogy? The atypical plastomes of Geraniaceae

A number of plant groups have been proposed as ideal systems to explore plastid inheritance, plastome evolution and plastome-nuclear genome coevolution. Quick generation times and a compact nuclear genome in Arabidopsis thaliana, the relative ease of plastid isolation from Spinacia oleracea and the tractability of plastid transformation in Nicotiana tabacum are all desirable attributes in a model system; however, these and most other groups all lack novelty in terms of plastome structure and nucleotide sequence evolution. Contemporary sequencing and assembly technologies have facilitated analyses of atypical plastomes and, as predicted by early investigations, Geraniaceae plastomes have experienced unprecedented rearrangements relative…

Read More »

Sunday, September 22, 2019

An ancient integration in a plant NLR is maintained as a trans-species polymorphism

Plant immune receptors are under constant selective pressure to maintain resistance to plant pathogens. Nucleotide-binding leucine-rich repeat (NLR) proteins are one class of cytoplasmic immune receptors whose genes commonly show signatures of adaptive evolution. While it is known that balancing selection contributes to maintaining high intraspecific allelic diversity, the evolutionary mechanism that influences the transmission of alleles during speciation remains unclear. The barley Mla locus has over 30 described alleles conferring isolate-specific resistance to barley powdery mildew and contains three NLR families (RGH1, RGH2, and RGH3). We discovered (using sequence capture and RNAseq) the presence of a novel integrated Exo70…

Read More »

Sunday, September 22, 2019

Identification of candidate genes at the Dp-fl locus conferring resistance against the rosy apple aphid Dysaphis plantaginea

The cultivated apple is susceptible to several pests including the rosy apple aphid (RAA; Dysaphis plantaginea Passerini), control of which is mainly based on chemical treatments. A few cases of resistance to aphids have been described in apple germplasm resources, laying the basis for the development of new resistant cultivars by breeding. The cultivar ‘Florina’ is resistant to RAA, and recently, the Dp-fl locus responsible for its resistance was mapped on linkage group 8 of the apple genome. In this paper, a chromosome walking approach was performed by using a ‘Florina’ bacterial artificial chromosome (BAC) library. The walking started from…

Read More »

Sunday, September 22, 2019

Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza.

The genus Oryza is a model system for the study of molecular evolution over time scales ranging from a few thousand to 15 million years. Using 13 reference genomes spanning the Oryza species tree, we show that despite few large-scale chromosomal rearrangements rapid species diversification is mirrored by lineage-specific emergence and turnover of many novel elements, including transposons, and potential new coding and noncoding genes. Our study resolves controversial areas of the Oryza phylogeny, showing a complex history of introgression among different chromosomes in the young ‘AA’ subclade containing the two domesticated species. This study highlights the prevalence of functionally…

Read More »

Sunday, September 22, 2019

Genome sequences of Chlorella sorokiniana UTEX 1602 and Micractinium conductrix SAG 241.80: implications to maltose excretion by a green alga.

Green algae represent a key segment of the global species capable of photoautotrophic-driven biological carbon fixation. Algae partition fixed-carbon into chemical compounds required for biomass, while diverting excess carbon into internal storage compounds such as starch and lipids or, in certain cases, into targeted extracellular compounds. Two green algae were selected to probe for critical components associated with sugar production and release in a model alga. Chlorella sorokiniana UTEX 1602 – which does not release significant quantities of sugars to the extracellular space – was selected as a control to compare with the maltose-releasing Micractinium conductrix SAG 241.80 – which…

Read More »

1 2 3 4 6

Subscribe for blog updates:

Archives