Menu
April 21, 2020  |  

Complete chloroplast genome sequences of Kaempferia galanga and Kaempferia elegans: Molecular structures and comparative analysis.

Kaempferia galanga and Kaempferia elegans, which belong to the genus Kaempferia family Zingiberaceae, are used as valuable herbal medicine and ornamental plants, respectively. The chloroplast genomes have been used for molecular markers, species identification and phylogenetic studies. In this study, the complete chloroplast genome sequences of K. galanga and K. elegans are reported. Results show that the complete chloroplast genome of K. galanga is 163,811 bp long, having a quadripartite structure with large single copy (LSC) of 88,405 bp and a small single copy (SSC) of 15,812 bp separated by inverted repeats (IRs) of 29,797 bp. Similarly, the complete chloroplast genome of K. elegans is 163,555 bp long, having a quadripartite structure in which IRs of 29,773 bp length separates 88,020 bp of LSC and 15,989 bp of SSC. A total of 111 genes in K. galanga and 113 genes in K. elegans comprised 79 protein-coding genes and 4 ribosomal RNA (rRNA) genes, as well as 28 and 30 transfer RNA (tRNA) genes in K. galanga and K. elegans, respectively. The gene order, GC content and orientation of the two Kaempferia chloroplast genomes exhibited high similarity. The location and distribution of simple sequence repeats (SSRs) and long repeat sequences were determined. Eight highly variable regions between the two Kaempferia species were identified and 643 mutation events, including 536 single-nucleotide polymorphisms (SNPs) and 107 insertion/deletions (indels), were accurately located. Sequence divergences of the whole chloroplast genomes were calculated among related Zingiberaceae species. The phylogenetic analysis based on SNPs among eleven species strongly supported that K. galanga and K. elegans formed a cluster within Zingiberaceae. This study identified the unique characteristics of the entire K. galanga and K. elegans chloroplast genomes that contribute to our understanding of the chloroplast DNA evolution within Zingiberaceae species. It provides valuable information for phylogenetic analysis and species identification within genus Kaempferia.


April 21, 2020  |  

Full-length transcriptome analysis of Litopenaeus vannamei reveals transcript variants involved in the innate immune system.

To better understand the immune system of shrimp, this study combined PacBio isoform sequencing (Iso-Seq) and Illumina paired-end short reads sequencing methods to discover full-length immune-related molecules of the Pacific white shrimp, Litopenaeus vannamei. A total of 72,648 nonredundant full-length transcripts (unigenes) were generated with an average length of 2545 bp from five main tissues, including the hepatopancreas, cardiac stomach, heart, muscle, and pyloric stomach. These unigenes exhibited a high annotation rate (62,164, 85.57%) when compared against NR, NT, Swiss-Prot, Pfam, GO, KEGG and COG databases. A total of 7544 putative long noncoding RNAs (lncRNAs) were detected and 1164 nonredundant full-length transcripts (449 UniTransModels) participated in the alternative splicing (AS) events. Importantly, a total of 5279 nonredundant full-length unigenes were successfully identified, which were involved in the innate immune system, including 9 immune-related processes, 19 immune-related pathways and 10 other immune-related systems. We also found wide transcript variants, which increased the number and function complexity of immune molecules; for example, toll-like receptors (TLRs) and interferon regulatory factors (IRFs). The 480 differentially expressed genes (DEGs) were significantly higher or tissue-specific expression patterns in the hepatopancreas compared with that in other four tested tissues (FDR <0.05). Furthermore, the expression levels of six selected immune-related DEGs and putative IRFs were validated using real-time PCR technology, substantiating the reliability of the PacBio Iso-seq results. In conclusion, our results provide new genetic resources of long-read full-length transcripts data and information for identifying immune-related genes, which are an invaluable transcriptomic resource as genomic reference, especially for further exploration of the innate immune and defense mechanisms of shrimp. Copyright © 2019 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages.

The use of bacteriophages represents a valid alternative to conventional antimicrobial treatments, overcoming the widespread bacterial antibiotic resistance phenomenon. In this work, we evaluated whether biomimetic hydroxyapatite (HA) nanocrystals are able to enhance some properties of bacteriophages. The final goal of this study was to demonstrate that biomimetic HA nanocrystals can be used for bacteriophage delivery in the context of bacterial infections, and contribute – at the same time – to enhance some of the biological properties of the same bacteriophages such as stability, preservation, antimicrobial activity, and so on.Phage isolation and characterization were carried out by using Mitomycin C and following double-layer agar technique. The biomimetic HA water suspension was synthesized in order to obtain nanocrystals with plate-like morphology and nanometric dimensions. The interaction of phages with the HA was investigated by dynamic light scattering and Zeta potential analyses. The cytotoxicity and intracellular killing activities of the phage-HA complex were evaluated in human hepatocellular carcinoma HepG2 cells. The bacterial inhibition capacity of the complex was assessed on chicken minced meat samples infected with Salmonella Rissen.Our data highlighted that the biomimetic HA nanocrystal-bacteriophage complex was more stable and more effective than phages alone in all tested experimental conditions.Our results evidenced the important contribution of biomimetic HA nanocrystals: they act as an excellent carrier for bacteriophage delivery and enhance its biological characteristics. This study confirmed the significant role of the mineral HA when it is complexed with biological entities like bacteriophages, as it has been shown for molecules such as lactoferrin.


April 21, 2020  |  

A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana.

Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.