X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, November 9, 2018

User Group Meeting: Application of genome assembly in Bovinae species

In this PacBio User Group Meeting presentation, Tim Smith of the USDA’s Agricultural Research Service describes efforts to generate reference-grade genome assemblies for various bovine species and analyze them to understand factors such as how selective breeding has affected certain breeds. Genome assemblies he presents span cattle, water buffalo, and gaur. Smith shows data for each assembly, noting that as data production shifted to the Sequel System, long-read PacBio data became even better at producing highly contiguous assemblies.

Read More »

Friday, November 9, 2018

User Group Meeting: The trials and tribulations of high quality human genome assembly

In this PacBio User Group Meeting presentation, Tina Graves-Lindsay of the McDonnell Genome Institute and the Genome Reference Consortium speaks about the importance of phasing human reference genomes. Her team is now working on its fifteenth human genome assembly — part of a major effort to improve genomic representation of ethnic diversity — with a pipeline that generates 60-fold PacBio coverage for a de novo assembly, followed by scaffolding with other technologies. They are also using FALCON-Unzip to separate haplotypes, leading to reference-grade diploid assemblies. This approach has already helped resolve errors seen in other genomes and even the gold-standard…

Read More »

Friday, November 9, 2018

User Group Meeting: Low-input workflow for PacBio de novo genome assemblies

Jonas Korlach kicks off Day 2 of the 2018 User Group Meeting by discussing a recent collaboration and technique for low-input starting material and high quality de novo assembly projects. While new and not yet fully supported, many researchers have interest in starting with lower amounts of DNA for whole genome sequencing. This protocol requires Express Kit v2, which will be available in early 2019.

Read More »

Friday, November 9, 2018

User Group Meeting: Future developments of SMRT Sequencing

Jonas Korlach closes the 2018 User Group Meeting with an outlook and perspectives on SMRT Sequencing, highlighting what possibilities the Sequel System 6.0 release. Learn more about this release at: https://www.pacb.com/products-and-services/sequel-system/latest-system-release/

Read More »

Friday, November 9, 2018

ASHG PacBio Workshop: The Iso-Seq method for discovering alternative splicing in human diseases

In this ASHG workshop presentation, Elizabeth Tseng of PacBio showed how the Iso-Seq method can be used to discover disease-associated alternative splicing. Because this approach to isoform sequencing yields accurate, full-length transcripts requiring no assembly, it’s ideal for disease studies that need a more comprehensive picture of alternative splicing activity. Tseng offered several published examples of how the Iso-Seq method has been used for everything from single-gene studies to whole-transcriptome studies, and also detailed how the latest Sequel System chemistry recovers more genes and produces more usable reads.

Read More »

Friday, November 9, 2018

ASHG PacBio Workshop: Long-read sequencing for detecting clinically relevant structural variation

In this ASHG 2017 presentation, Han Brunner of Radboud University Medical Center presented research using SMRT Sequencing to detect structural variants to uncover the genetic causes of intellectual disability. He shared that long-read sequencing enabled detection of 25,000 structural variants per genome. Brunner presented data from patient trios to identify de novo structural variant candidates and ongoing validation work to determine the causative mutations of intellectual disability.

Read More »

Friday, November 9, 2018

ASHG PacBio Workshop: Expansion sequence variations underlie distinct disease phenotypes in SCA10

In this ASHG 2017 presentation, Karen McFarland of the University of Florida presented research on spinocerebellar ataxia type 10 (SCA10), a progressive neurodegenerative disease caused by repeat expansions. She outlined efforts to sequence these repeat expansions including using CRISPR-Cas9 system coupled with SMRT Sequencing. McFarland shared findings from a study of a Parkinson’s disease patient and family that showed variations in expansion sequence can underlie distinct disease phenotypes.

Read More »

Friday, November 9, 2018

PAG Conference: Long-read sequencing reveals complex genomic architecture in independent carnivorous plant lineages

In this PAG 2018 presentation, Tanya Renner of Pennsylvania State University shares research using PacBio SMRT Sequencing to understand the genomes and transcriptomes of carnivorous plants. She describes the humped bladderwort, Utricularia gibba, as having an extreme genome due to its small size (100 Mbp) despite containing numerous tandem gene duplications and having undergone two whole genome duplications. Renner shares ongoing research into two Drosera species, commonly known as sundews, which through whole genome sequencing are illuminating carnivorous plant genome structural evolution including the transition from monocentric to holocentric chromosomes.

Read More »

Friday, November 9, 2018

PAG Conference: An extreme metabolism: Iso-Seq analysis of the ruby-throated hummingbird transcriptome

Winston Timp from Johns Hopkins University studies the metabolism of hummingbirds, which sustain the highest metabolic rates among all vertebrates. Notably, hummingbirds can switch rapidly between a fuel of lipids to newly ingested sugars. This remarkable metabolism is supported by enzymes which operate at the extreme limit of catalytic efficiency. Understanding the molecular basis of enzymatic action will provide a foundation enabling rational engineering of metabolic circuits in other systems. To do this, Dr. Timp and his team generated a de novo transcriptome of the hummingbird liver using the Iso-Seq method. Characterization of the resulting protein coding sequences provides clues…

Read More »

1 2 3 11