X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Wednesday, February 26, 2020

Joint calling and PacBio SMRT Sequencing for indel and structural variant detection in populations

Fast and effective variant calling algorithms have been crucial to the successful application of DNA sequencing in human genetics. In particular, joint calling – in which reads from multiple individuals are pooled to increase power for shared variants – is an important tool for population surveys of variation. Joint calling was applied by the 1000 Genomes Project to identify variants across many individuals each sequenced to low coverage (about 5-fold). This approach successfully found common small variants, but broadly missed structural variants and large indels for which short-read sequencing has limited sensitivity. To support use of large variants in rare…

Read More »

Wednesday, February 26, 2020

A simple segue from Sanger to high-throughput SMRT Sequencing with a M13 barcoding system

High-throughput NGS methods are increasingly utilized in the clinical genomics market. However, short-read sequencing data continues to remain challenged by mapping inaccuracies in low complexity regions or regions of high homology and may not provide adequate coverage within GC-rich regions of the genome. Thus, the use of Sanger sequencing remains popular in many clinical sequencing labs as the gold standard approach for orthogonal validation of variants and to interrogate missed regions poorly covered by second-generation sequencing. The use of Sanger sequencing can be less than ideal, as it can be costly for high volume assays and projects. Additionally, Sanger sequencing…

Read More »

Wednesday, February 26, 2020

FALCON-Phase integrates PacBio and HiC data for de novo assembly, scaffolding and phasing of a diploid Puerto Rican genome (HG00733)

Haplotype-resolved genomes are important for understanding how combinations of variants impact phenotypes. The study of disease, quantitative traits, forensics, and organ donor matching are aided by phased genomes. Phase is commonly resolved using familial data, population-based imputation, or by isolating and sequencing single haplotypes using fosmids, BACs, or haploid tissues. Because these methods can be prohibitively expensive, or samples may not be available, alternative approaches are required. de novo genome assembly with PacBio Single Molecule, Real-Time (SMRT) data produces highly contiguous, accurate assemblies. For non-inbred samples, including humans, the separate resolution of haplotypes results in higher base accuracy and more…

Read More »

Wednesday, February 26, 2020

Single chromosomal genome assemblies on the Sequel System with Circulomics high molecular weight DNA extraction for microbes

Background: The Nanobind technology from Circulomics provides an elegant HMW DNA extraction solution for genome sequencing of Gram-positive and -negative microbes. Nanobind is a nanostructured magnetic disk that can be used for rapid extraction of high molecular weight (HMW) DNA from diverse sample types including cultured cells, blood, plant nuclei, and bacteria. Processing can be completed in 7 kb repeats. Fragment size was increased to ~14 kb, with some fragments >30 kb. Results: Here we present a demonstration of these capabilities using isolates relevant to high-throughput sequencing applications, including common foodborne pathogens (Shigella, Listeria, Salmonella), and species often seen in…

Read More »

Wednesday, February 26, 2020

No-amp targeted SMRT sequencing using a CRISPR-Cas9 enrichment method

Targeted sequencing of genomic DNA requires an enrichment method to generate detectable amounts of sequencing products. Genomic regions with extreme composition bias and repetitive sequences can pose a significant enrichment challenge. Many genetic diseases caused by repeat element expansions are representative of these challenging enrichment targets. PCR amplification, used either alone or in combination with a hybridization capture method, is a common approach for target enrichment. While PCR amplification can be used successfully with genomic regions of moderate to high complexity, it is the low-complexity regions and regions containing repetitive elements sometimes of indeterminate lengths due to repeat expansions that…

Read More »

Wednesday, February 26, 2020

Comprehensive variant detection in a human genome with PacBio high-fidelity reads

Human genomic variations range in size from single nucleotide substitutions to large chromosomal rearrangements. Sequencing technologies tend to be optimized for detecting particular variant types and sizes. Short reads excel at detecting SNVs and small indels, while long or linked reads are typically used to detect larger structural variants or phase distant loci. Long reads are more easily mapped to repetitive regions, but tend to have lower per-base accuracy, making it difficult to call short variants. The PacBio Sequel System produces two main data types: long continuous reads (up to 100 kbp), generated by single passes over a long template,…

Read More »

Wednesday, February 26, 2020

Haplotyping using full-length transcript sequencing reveals allele-specific expression

An important need in analyzing complex genomes is the ability to separate and phase haplotypes. While whole genome assembly can deliver this information, it cannot reveal whether there is allele-specific gene or isoform expression. The PacBio Iso-Seq method, which can produce high-quality transcript sequences of 10 kb and longer, has been used to annotate many important plant and animal genomes. We present an algorithm called IsoPhase that post-processes Iso-Seq data for transcript-based haplotyping. We applied IsoPhase to a maize Iso-Seq dataset consisting of two homozygous parents and two F1 cross hybrids. We validated the majority of the SNPs called with…

Read More »

Wednesday, February 26, 2020

Library prep and bioinformatics improvements for full-length transcript sequencing on the PacBio Sequel System

The PacBio Iso-Seq method produces high-quality, full-length transcripts of up to 10 kb and longer and has been used to annotate many important plant and animal genomes. Here we describe an improved, simplified library workflow and analysis pipeline that reduces library preparation time, RNA input, and cost. The Iso-Seq V2 Express workflow is a one day protocol that requires only ~300 ng of total RNA input while also reducing the number of reverse transcription and amplification steps down to single reactions. Compared with the previous workflow, the Iso-Seq V2 Express workflow increases the percentage of full-length (FL) reads while achieving…

Read More »

Wednesday, February 26, 2020

A low DNA input protocol for high-quality PacBio de novo genome assemblies from single invertebrate individuals

A high-quality reference genome is an essential tool for studies of plant and animal genomics. PacBio Single Molecule, Real-Time (SMRT) Sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. PacBio is the core technology for many large genome initiatives, however, relatively high DNA input requirements (5 µg for standard library protocol) have placed PacBio out of reach for many projects on small, non-inbred organisms that may have lower DNA content. Here we present high-quality de novo genome assemblies from single invertebrate individuals for two different species: the Anopheles…

Read More »

Wednesday, February 26, 2020

Improving the reference with a diversity panel of sequence-resolved structural variation

Although the accuracy of the human reference genome is critical for basic and clinical research, structural variants (SVs) have been difficult to assess because data capable of resolving them have been limited. To address potential bias, we sequenced a diversity panel of nine human genomes to high depth using long-read, single-molecule, real-time sequencing data. Systematically identifying and merging SVs =50 bp in length for these nine and one public genome yielded 83,909 sequence-resolved insertions, deletions, and inversions. Among these, 2,839 (2.0 Mbp) are shared among all discovery genomes with an additional 13,349 (6.9 Mbp) present in the majority of humans,…

Read More »

Wednesday, February 26, 2020

Single molecule high-fidelity (HiFi) Sequencing with >10 kb libraries

Recent improvements in sequencing chemistry and instrument performance combine to create a new PacBio data type, Single Molecule High-Fidelity reads (HiFi reads). Increased read length and improvement in library construction enables average read lengths of 10-20 kb with average sequence identity greater than 99% from raw single molecule reads. The resulting reads have the accuracy comparable to short read NGS but with 50-100 times longer read length. Here we benchmark the performance of this data type by sequencing and genotyping the Genome in a Bottle (GIAB) HG0002 human reference sample from the National Institute of Standards and Technology (NIST). We…

Read More »

Wednesday, February 26, 2020

A low DNA input protocol for high-quality PacBio de novo genome assemblies

A high-quality reference genome is an essential tool for studying the genetics of traits and disease, organismal, comparative and conservation biology, and population genomics. PacBio Single Molecule, Real-Time (SMRT) Sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. Improvements in throughput and concomitant reductions in cost have made PacBio an attractive core technology for many large genome initiatives. However, relatively high DNA input requirements (3 µg for standard library protocol) have placed PacBio out of reach for many projects on small organisms that may have lower DNA content…

Read More »

Wednesday, February 26, 2020

A high-quality de novo genome assembly from a single mosquito using PacBio sequencing

A high-quality reference genome is an essential tool for studies of plant and animal genomics. PacBio Single Molecule, Real-Time (SMRT) Sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. While PacBio is the core technology for many large genome initiatives, relatively high DNA input requirements (3 µg for standard library protocol) have placed PacBio out of reach for many projects on small, non-inbred organisms that may have lower DNA content. Here we present high-quality de novo genome assemblies from single invertebrate individuals for two different species: the Anopheles…

Read More »

Wednesday, February 26, 2020

Structural variant detection with long read sequencing reveals driver and passenger mutations in a melanoma cell line

Past large scale cancer genome sequencing efforts, including The Cancer Genome Atlas and the International Cancer Genome Consortium, have utilized short-read sequencing, which is well-suited for detecting single nucleotide variants (SNVs) but far less reliable for detecting variants larger than 20 base pairs, including insertions, deletions, duplications, inversions and translocations. Recent same-sample comparisons of short- and long-read human reference genome data have revealed that short-read resequencing typically uncovers only ~4,000 structural variants (SVs, =50 bp) per genome and is biased towards deletions, whereas sequencing with PacBio long-reads consistently finds ~20,000 SVs, evenly balanced between insertions and deletions. This discovery has…

Read More »

Wednesday, February 26, 2020

Streamlines SMRTbell library generation using addition-only, single tube strategy for all library types reduces time to results

We have streamlined the SMRTbell library generation protocols with improved workflows to deliver seamless end-to-end solutions from sample to analysis. A key improvement is the development of a single-tube reaction strategy that shortened hands-on time needed to generate each SMRTbell library, reduced time-consuming AM Pure purification steps, and minimized sample-handling induced gDNA damage to improve the integrity of long-insert SMRTbell templates for sequencing. The improved protocols support all large-insert genomic libraries, multiplexed microbial genomes, and amplicon sequencing. These advances enable completion of library preparation in less than a day (approximately 4 hours) and opens opportunities for automated library preparation for…

Read More »

1 2 3 16