Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.


Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.


You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Wednesday, June 13, 2018

De Novo Assembly Brochure: Assembly options for your SMRT Sequencing data

It is now easier and more affordable than ever to do a genome project with PacBio Single Molecule, Real-Time (SMRT) Sequencing—the gold standard for generating contiguous, highly accurate reference genomes. Assembly is no longer a challenge with the wealth of bioinformatics tools developed and optimized for SMRT Sequencing data, enabling you to generate high-quality genome assemblies on any budget.

Read More »

Thursday, April 5, 2018

Core Lab Brochure: The most trusted long-read technology

SMRT Sequencing is Smart Business. Scientists rely on long-read sequencing to generate high-quality reference genomes, more accurate gene and transcript models, and an integrated view of the epigenome for their organisms of interest. Single Molecule, Real-Time (SMRT) Sequencing from PacBio is the most trusted long-read sequencing solution available today, delivering comprehensive genomic information for microbes, complex plant and animal genomes, and human biomedical research.

Read More »

Tuesday, February 20, 2018

Application Brochure: No-Amp targeted sequencing.

Due to technology limitations, repeat-expansion disorders have gone without the needed base-level resolution of the disease causative long repetitive elements. Enrichment of these hard-to-amplify genomic regions is now possible with our no-amplification (No-Amp) targeted sequencing method utilizing the CRISPR/Cas9 system.

Read More »

Thursday, June 22, 2017

Plant and Animal Sciences Brochure: A comprehensive view of genetic diversity

Single Molecule, Real-Time (SMRT®) Sequencing combines long reads with uniform coverage to provide uniquely comprehensive views of plant and animal genomes and transcriptomes. High-quality genome assemblies and evidence-based annotations promote improved genetic marker development, discovery of novel genes, and structural variation characterization.

Read More »

Thursday, May 25, 2017

Application Brochure: Microbial communities – Complex microbial populations simplified.

The ability to identify and understand the functions of the complex microbial populations living in, on, and around us requires comprehensive characterization of each community member. Long reads, high accuracy, and single-molecule resolution make Single Molecule, Real-Time (SMRT) Sequencing ideal for full-length 16S rRNA sequencing, long-read metagenomic profiling, and shotgun metagenomic assembly.

Read More »

Wednesday, March 22, 2017

Cancer Brochure: Discover the hidden landscape of cancer variants

To bring precision medicine to every patient, cancer researchers need a more comprehensive view of all the somatic variants in genes, transcripts and whole genomes that drive cancer biology. Single Molecule, Real-Time (SMRT) Sequencing delivers the read lengths, uniform coverage, and accuracy needed to access the complete size spectrum of driver mutations — from rare single nucleotide variants to complex structural variants. Full-length transcript sequencing brings clarity to tumor-specific isoform and splice variant expression, enabling the discovery of novel biomarkers for early detection, tumor stratification, treatment response, and drug resistance. With SMRT Sequencing, scientists gain new insight into the most…

Read More »

Friday, February 17, 2017

Human Biomedical Research Brochure: The most comprehensive view of the human genome

To understand the genetic factors underlying health and disease and to address hidden heritability, scientists require a more comprehensive view of all the variations in the human genome. Single Molecule, Real-Time (SMRT) Sequencing delivers the read lengths, uniform coverage, and accuracy needed for accessing the complete size spectrum of sequence variant types — from single nucleotides to complex structural variants. PacBio’s long single-molecule reads also provide direct variant phasing information across full-length genes and chromosome haplotype blocks. With SMRT Sequencing, scientists gain new insight into the genetic basis of health and disease.

Read More »

Monday, January 16, 2017

SMRT Analysis Brochure: Gain a deeper understanding of your sequencing data

The PacBio Platform includes an extensive software portfolio that employs key advantages of SMRT (Single Molecule, Real-Time) Sequencing technology: extraordinarily long reads, highest consensus accuracy, uniform coverage and simultaneous epigenetic characterization. Core elements of our analytical portfolio include SMRT Analysis software, DevNet and SMRT Compatible products.

Read More »

Monday, June 6, 2016

Industrial Biotechnology Brochure: Fuel biotech discovery with confident characterization of microbes and their communities.

Industrial microbiologists rely on comprehensive genomic information to identify and develop complex biological products. Single Molecule, Real-Time (SMRT) Sequencing delivers a more complete view of individual organisms and microbial communities, fueling research for modern pharmaceutical discovery, environmental remediation, chemical commodity production, and agriculture products.

Read More »

Thursday, May 12, 2016

Epigenetics Application Brochure: Characterize the epigenetic landscape of your genome.

Single Molecule, Real-Time (SMRT) Sequencing directly detects DNA modifications by measuring variation in the polymerase kinetics of DNA base incorporation during sequencing. With high throughput, long reads, and the sensitivity to detect epigenetic modification without amplification or chemical conversions, the PacBio Systems offer scalable solutions for assessing DNA modifications in bacterial and eukaryotic genomes.

Read More »

Friday, September 25, 2015

HLA Sequencing Application Brochure: Fully phased, allele-specific HLA sequencing – the perfect pair.

Single Molecule Real-Time (SMRT) Sequencing delivers reads that span the lengths of the majority of HLA class I and II genes. Unambiguously phase 4-field HLA types without imputation. With a more accurate and complete picture, gain deeper understanding of immune-related disease causality, graft-versus-host disease in hematopoietic transplantation, and drug hypersensitivity.

Read More »

Friday, September 25, 2015

Immunology Brochure: Invaluable insights into immunology.

In order to understand the molecular mechanisms governing the outcomes of disease, health and survival, immunologists have to characterize exceptionally complex genomic regions, like major histocompatibility complex (MHC), killer cell immune receptors (KIR), and the B and T-cell immune repertoire. Single Molecule, Real-Time (SMRT) Sequencing delivers the long read lengths, uniform coverage and high accuracy necessary to comprehensively and confidently resolve these immune sub-genomic regions. The granularity of data generated by PacBio® reads provides new access to imputation-free characterization of genes and haplotypes for invaluable genomic insights to advance disease association and evolutionary research.

Read More »

1 2