This animation depicts a process by which single molecule SMRTbell templates are loaded in the Zero Mode Waveguides (ZMWs) of the PacBio RS II sequencing system using the automated MagBead Station.
We have recently shown that nanopore zero-mode waveguides are effective tools for capturing picogram levels of long DNA fragments for single-molecule DNA sequencing. Despite these key advantages, the manufacturing of large arrays is not practical due to the need for serial nanopore fabrication. To overcome this challenge, we have developed an approach for the wafer-scale fabrication of waveguide arrays on low-cost porous membranes, which are deposited using molecular-layer deposition. The membrane at each waveguide base contains a network of serpentine pores that allows for efficient electrophoretic DNA capture at picogram levels while eliminating the need for prohibitive serial pore milling.…
Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and…
Zinc finger nucleases (ZFNs) are promising tools for genome editing for biotechnological as well as therapeutic purposes. Delivery remains a major issue impeding targeted genome modification. Lentiviral vectors are highly efficient for delivering transgenes into cell lines, primary cells and into organs, such as the liver. However, the reverse transcription of lentiviral vectors leads to recombination of homologous sequences, as found between and within ZFN monomers.We used a codon swapping strategy to both drastically disrupt sequence identity between ZFN monomers and to reduce sequence repeats within a monomer sequence. We constructed lentiviral vectors encoding codon-swapped ZFNs or unmodified ZFNs from…
Although engineered nucleases can efficiently cleave intracellular DNA at desired target sites, major concerns remain on potential ‘off-target’ cleavage that may occur throughout the genome. We developed an online tool: predicted report of genome-wide nuclease off-target sites (PROGNOS) that effectively identifies off-target sites. The initial bioinformatics algorithms in PROGNOS were validated by predicting 44 of 65 previously confirmed off-target sites, and by uncovering a new off-target site for the extensively studied zinc finger nucleases (ZFNs) targeting C-C chemokine receptor type 5. Using PROGNOS, we rapidly interrogated 128 potential off-target sites for newly designed transcription activator-like effector nucleases containing either Asn-Asn…
Gene therapy with genetically modified human CD34(+) hematopoietic stem and progenitor cells (HSPCs) may be safer using targeted integration (TI) of transgenes into a genomic ‘safe harbor’ site rather than random viral integration. We demonstrate that temporally optimized delivery of zinc finger nuclease mRNA via electroporation and adeno-associated virus (AAV) 6 delivery of donor constructs in human HSPCs approaches clinically relevant levels of TI into the AAVS1 safe harbor locus. Up to 58% Venus(+) HSPCs with 6-16% human cell marking were observed following engraftment into mice. In HSPCs from patients with X-linked chronic granulomatous disease (X-CGD), caused by mutations in…
Recent advances in sequencing technologies have transformed the field of virus discovery and virome analysis. Once mostly confined to the traditional Sanger sequencing based individual virus discovery, is now entirely replaced by high throughput sequencing (HTS) based virus metagenomics that can be used to characterize the nature and composition of entire viromes. To better harness the potential of HTS for the study of viromes, sample preparation methodologies use different approaches to exclude amplification of non-viral components that can overshadow low-titer viruses. These virus-sequence enrichment approaches mostly focus on the sample preparation methods, like enzymatic digestion of non-viral nucleic acids and…
Zero-mode waveguides (ZMWs) are photonic nanostructures that create highly confined optical observation volumes, thereby allowing single-molecule-resolved biophysical studies at relatively high concentrations of fluorescent molecules. This principle has been successfully applied in single-molecule, real-time (SMRT®) DNA sequencing for the detection of DNA sequences and DNA base modifications. In contrast, RNA sequencing methods cannot provide sequence and RNA base modifications concurrently as they rely on complementary DNA (cDNA) synthesis by reverse transcription followed by sequencing of cDNA. Thus, information on RNA modifications is lost during the process of cDNA synthesis.Here we describe an application of SMRT technology to follow the activity…
Zero-mode waveguides (ZMWs) are powerful analytical tools corresponding to optical nanostructures fabricated in a thin metallic film capable of confining an excitation volume to the range of attoliters. This small volume of confinement allows single-molecule fluorescence experiments to be performed at physiologically relevant concentrations of fluorescently labeled biomolecules. Exactly one molecule to be studied must be attached at the floor of the ZMW for signal detection and analysis; however, the massive parallelism of these nanoarrays suffers from a Poissonian-limited distribution of these biomolecules. To date, there is no method available that provides full single-molecule occupancy of massively arrayed ZMWs. Here…
We present single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). We detected the temporal order of their enzymatic incorporation into a growing DNA strand with zero-mode waveguide nanostructure arrays, which provide optical observation volume confinement and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions. Conjugation of fluorophores to the terminal phosphate moiety of the dNTPs allows continuous observation of DNA synthesis over thousands of bases without steric hindrance. The data report directly on polymerase dynamics, revealing distinct polymerization states and pause sites corresponding to DNA…
The confocal detection principle is extended to a highly parallel optical system that continuously analyzes thousands of concurrent sample locations. This is achieved through the use of a holographic laser illumination multiplexer combined with a confocal pinhole array before a prism dispersive element used to provide spectroscopic information from each confocal volume. The system is demonstrated to detect and identify single fluorescent molecules from each of several thousand independent confocal volumes in real time.
Pacific Biosciences has developed a method for real-time sequencing of single DNA molecules (Eid et al., 2009), with intrinsic sequencing rates of several bases per second and read lengths into the kilobase range. Conceptually, this sequencing approach is based on eavesdropping on the activity of DNA polymerase carrying out template-directed DNA polymerization. Performed in a highly parallel operational mode, sequential base additions catalyzed by each polymerase are detected with terminal phosphate-linked, fluorescence-labeled nucleotides. This chapter will first outline the principle of this single-molecule, real-time (SMRT) DNA sequencing method, followed by descriptions of its underlying components and typical sequencing run conditions.…
Optical approaches for observing the dynamics of single molecules have required pico- to nanomolar concentrations of fluorophore in order to isolate individual molecules. However, many biologically relevant processes occur at micromolar ligand concentrations, necessitating a reduction in the conventional observation volume by three orders of magnitude. We show that arrays of zero-mode waveguides consisting of subwavelength holes in a metal film provide a simple and highly parallel means for studying single-molecule dynamics at micromolar concentrations with microsecond temporal resolution. We present observations of DNA polymerase activity as an example of the effectiveness of zero-mode waveguides for performing single-molecule experiments at…
Targeted genome editing with engineered nucleases has transformed the ability to introduce precise sequence modifications at almost any site within the genome. A major obstacle to probing the efficiency and consequences of genome editing is that no existing method enables the frequency of different editing events to be simultaneously measured across a cell population at any endogenous genomic locus. We have developed a novel method for quantifying individual genome editing outcomes at any site of interest using single molecule real time (SMRT) DNA sequencing. We show that this approach can be applied at various loci, using multiple engineered nuclease platforms…
At what point during translation do proteins fold? It is well established that proteins can fold cotranslationally outside the ribosome exit tunnel, whereas studies of folding inside the exit tunnel have so far detected only the formation of helical secondary structure and collapsed or partially structured folding intermediates. Here, using a combination of cotranslational nascent chain force measurements, inter-subunit fluorescence resonance energy transfer studies on single translating ribosomes, molecular dynamics simulations, and cryoelectron microscopy, we show that a small zinc-finger domain protein can fold deep inside the vestibule of the ribosome exit tunnel. Thus, for small protein domains, the ribosome itself can provide…