Menu
July 19, 2019  |  

Genome sequence of the progenitor of wheat A subgenome Triticum urartu.

Triticum urartu (diploid, AA) is the progenitor of the A subgenome of tetraploid (Triticum turgidum, AABB) and hexaploid (Triticum aestivum, AABBDD) wheat1,2. Genomic studies of T. urartu have been useful for investigating the structure, function and evolution of polyploid wheat genomes. Here we report the generation of a high-quality genome sequence of T. urartu by combining bacterial artificial chromosome (BAC)-by-BAC sequencing, single molecule real-time whole-genome shotgun sequencing 3 , linked reads and optical mapping4,5. We assembled seven chromosome-scale pseudomolecules and identified protein-coding genes, and we suggest a model for the evolution of T. urartu chromosomes. Comparative analyses with genomes of other grasses showed gene loss and amplification in the numbers of transposable elements in the T. urartu genome. Population genomics analysis of 147 T. urartu accessions from across the Fertile Crescent showed clustering of three groups, with differences in altitude and biostress, such as powdery mildew disease. The T. urartu genome assembly provides a valuable resource for studying genetic variation in wheat and related grasses, and promises to facilitate the discovery of genes that could be useful for wheat improvement.


July 7, 2019  |  

Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm.

Long sequencing reads generated by single-molecule sequencing technology offer the possibility of dramatically improving the contiguity of genome assemblies. The biggest challenge today is that long reads have relatively high error rates, currently around 15%. The high error rates make it difficult to use this data alone, particularly with highly repetitive plant genomes. Errors in the raw data can lead to insertion or deletion errors (indels) in the consensus genome sequence, which in turn create significant problems for downstream analysis; for example, a single indel may shift the reading frame and incorrectly truncate a protein sequence. Here, we describe an algorithm that solves the high error rate problem by combining long, high-error reads with shorter but much more accurate Illumina sequencing reads, whose error rates average <1%. Our hybrid assembly algorithm combines these two types of reads to construct mega-reads, which are both long and accurate, and then assembles the mega-reads using the CABOG assembler, which was designed for long reads. We apply this technique to a large data set of Illumina and PacBio sequences from the species Aegilops tauschii, a large and extremely repetitive plant genome that has resisted previous attempts at assembly. We show that the resulting assembled contigs are far larger than in any previous assembly, with an N50 contig size of 486,807 nucleotides. We compare the contigs to independently produced optical maps to evaluate their large-scale accuracy, and to a set of high-quality bacterial artificial chromosome (BAC)-based assemblies to evaluate base-level accuracy. © 2017 Zimin et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

Evolution of the wheat blast fungus through functional losses in a host specificity determinant.

Wheat blast first emerged in Brazil in the mid-1980s and has recently caused heavy crop losses in Asia. Here we show how this devastating pathogen evolved in Brazil. Genetic analysis of host species determinants in the blast fungus resulted in the cloning of avirulence genes PWT3 and PWT4, whose gene products elicit defense in wheat cultivars containing the corresponding resistance genes Rwt3 and Rwt4 Studies on avirulence and resistance gene distributions, together with historical data on wheat cultivation in Brazil, suggest that wheat blast emerged due to widespread deployment of rwt3 wheat (susceptible to Lolium isolates), followed by the loss of function of PWT3 This implies that the rwt3 wheat served as a springboard for the host jump to common wheat. Copyright © 2017, American Association for the Advancement of Science.


July 7, 2019  |  

A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene.

Zymoseptoria tritici is the causal agent of Septoria tritici blotch, a major pathogen of wheat globally and the most damaging pathogen of wheat in Europe. A gene-for-gene (GFG) interaction between Z. tritici and wheat cultivars carrying the Stb6 resistance gene has been postulated for many years, but the genes have not been identified. We identified AvrStb6 by combining quantitative trait locus mapping in a cross between two Swiss strains with a genome-wide association study using a natural population of c. 100 strains from France. We functionally validated AvrStb6 using ectopic transformations. AvrStb6 encodes a small, cysteine-rich, secreted protein that produces an avirulence phenotype on wheat cultivars carrying the Stb6 resistance gene. We found 16 nonsynonymous single nucleotide polymorphisms among the tested strains, indicating that AvrStb6 is evolving very rapidly. AvrStb6 is located in a highly polymorphic subtelomeric region and is surrounded by transposable elements, which may facilitate its rapid evolution to overcome Stb6 resistance. AvrStb6 is the first avirulence gene to be functionally validated in Z. tritici, contributing to our understanding of avirulence in apoplastic pathogens and the mechanisms underlying GFG interactions between Z. tritici and wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.


July 7, 2019  |  

Complete genome sequencing and targeted mutagenesis reveal virulence contributions of Tal2 and Tal4b of Xanthomonas translucens pv. undulosa ICMP11055 in bacterial leaf streak of wheat

Bacterial leaf streak caused by Xanthomonas translucens pv. undulosa (Xtu) is an important disease of wheat (Triticum aestivum) and barley (Hordeum vulgare) worldwide. Transcription activator-like effectors (TALEs) play determinative roles in many of the plant diseases caused by the different species and pathovars of Xanthomonas, but their role in this disease has not been characterized. ICMP11055 is a highly virulent Xtu strain from Iran. The aim of this study was to better understand genetic diversity of Xtu and to assess the role of TALEs in bacterial leaf streak of wheat by comparing the genome of this strain to the recently completely sequenced genome of a U.S. Xtu strain, and to several other draft X. translucens genomes, and by carrying out mutational analyses of the TALE (tal) genes the Iranian strain might harbor. The ICMP11055 genome, including its repeat-rich tal genes, was completely sequenced using single molecule, real-time technology (Pacific Biosciences). It consists of a single circular chromosome of 4,561,583 bp, containing 3,953 genes. Whole genome alignment with the genome of the United States Xtu strain XT4699 showed two major re-arrangements, nine genomic regions unique to ICMP11055, and one region unique to XT4699. ICMP110055 harbors 26 non-TALE type III effector genes and seven tal genes, compared to 25 and eight for XT4699. The tal genes occur singly or in pairs across five scattered loci. Four are identical to tal genes in XT4699. In addition to common repeat-variable diresidues (RVDs), the tal genes of ICMP11055, like those of XT4699, encode several RVDs rarely observed in Xanthomonas, including KG, NF, Y*, YD, and YK. Insertion and deletion mutagenesis of ICMP11055 tal genes followed by genetic complementation analysis in wheat cv. Chinese Spring revealed that Tal2 and Tal4b of ICMP11055 each contribute individually to the extent of disease caused by this strain. A largely conserved ortholog of tal2 is present in XT4699, but for tal4b, only a gene with partial, fragmented RVD sequence similarity can be found. Our results lay the foundation for identification of important host genes activated by Xtu TALEs as targets for the development of disease resistant varieties.


July 7, 2019  |  

New insights into structural organization and gene duplication in a 1.75-Mb genomic region harboring the a-gliadin gene family in Aegilops tauschii, the source of wheat D genome.

Among the wheat prolamins important for its end-use traits, a-gliadins are the most abundant, and are also a major cause of food-related allergies and intolerances. Previous studies of various wheat species estimated that between 25 and 150 a-gliadin genes reside in the Gli-2 locus regions. To better understand the evolution of this complex gene family, the DNA sequence of a 1.75-Mb genomic region spanning the Gli-2 locus was analyzed in the diploid grass, Aegilops tauschii, the ancestral source of D genome in hexaploid bread wheat. Comparison with orthologous regions from rice, sorghum, and Brachypodium revealed rapid and dynamic changes only occurring to the Ae. tauschii Gli-2 region, including insertions of high numbers of non-syntenic genes and a high rate of tandem gene duplications, the latter of which have given rise to 12 copies of a-gliadin genes clustered within a 550-kb region. Among them, five copies have undergone pseudogenization by various mutation events. Insights into the evolutionary relationship of the duplicated a-gliadin genes were obtained from their genomic organization, transcription patterns, transposable element insertions and phylogenetic analyses. An ancestral glutamate-like receptor (GLR) gene encoding putative amino acid sensor in all four grass species has duplicated only in Ae. tauschii and generated three more copies that are interspersed with the a-gliadin genes. Phylogenetic inference and different gene expression patterns support functional divergence of the Ae. tauschii GLR copies after duplication. Our results suggest that the duplicates of a-gliadin and GLR genes have likely taken different evolutionary paths; conservation for the former and neofunctionalization for the latter.© 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.


July 7, 2019  |  

Complete genome sequence of Pseudomonas syringae pv. lapsa strain ATCC 10859, isolated from infected wheat.

Pseudomonas syringae pv. lapsa is a pathovar of Pseudomonas syringae that can infect wheat. The complete genome of P. syringae pv. lapsa strain ATCC 10859 contains a 5,918,899-bp circular chromosome with 4,973 coding sequences, 16 rRNAs, 69 tRNAs, and an average GC content of 59.13%. The analysis of this genome revealed several gene clusters that are related to pathogenesis and virulence. Copyright © 2016 Kong et al.


July 7, 2019  |  

Cloning of the ?-secalin gene family in a wheat 1BL/1RS translocation line using BAC clone sequencing

Wheat 1BL/1RS translocation lines are planted around the world for their disease resistance and high yield. Most of them are poor in bread making, which is partially caused by ?-secalins that are encoded by the ?-secalin gene family, which is located on the short arm of rye chromosome 1R (1RS). However, information on the structure and evolution of the ?-secalin gene family is still limited.


July 7, 2019  |  

Suppressed recombination and unique candidate genes in the divergent haplotype encoding Fhb1, a major Fusarium head blight resistance locus in wheat.

Fine mapping and sequencing revealed 28 genes in the non-recombining haplotype containing Fhb1 . Of these, only a GDSL lipase gene shows a pathogen-dependent expression pattern. Fhb1 is a prominent Fusarium head blight resistance locus of wheat, which has been successfully introgressed in adapted breeding material, where it confers a significant increase in overall resistance to the causal pathogen Fusarium graminearum and the fungal virulence factor and mycotoxin deoxynivalenol. The Fhb1 region has been resolved for the susceptible wheat reference genotype Chinese Spring, yet the causal gene itself has not been identified in resistant cultivars. Here, we report the establishment of a 1 Mb contig embracing Fhb1 in the donor line CM-82036. Sequencing revealed that the region of Fhb1 deviates from the Chinese Spring reference in DNA size and gene content, which explains the repressed recombination at the locus in the performed fine mapping. Differences in genes expression between near-isogenic lines segregating for Fhb1 challenged with F. graminearum or treated with mock were investigated in a time-course experiment by RNA sequencing. Several candidate genes were identified, including a pathogen-responsive GDSL lipase absent in susceptible lines. The sequence of the Fhb1 region, the resulting list of candidate genes, and near-diagnostic KASP markers for Fhb1 constitute a valuable resource for breeding and further studies aiming to identify the gene(s) responsible for F. graminearum and deoxynivalenol resistance.


July 7, 2019  |  

Draft genome sequence of two monosporidial lines of the Karnal bunt fungus Tilletia indica Mitra (PSWKBGH-1 and PSWKBGH-2).

Karnal bunt disease caused by the fungus Tilletia indica Mitra is a serious concern due to strict quarantines affecting international trade of wheat. We announce here the first draft assembly of two monosporidial lines, PSWKBGH-1 and -2, of this fungus, having approximate sizes of 37.46 and 37.21 Mbp, respectively. Copyright © 2016 Sharma et al.


July 7, 2019  |  

Current advances in genome sequencing of common wheat and its ancestral species

Common wheat is an important and widely cultivated food crop throughout the world. Much progress has been made in regard to wheat genome sequencing in the last decade. Starting from the sequencing of single chromosomes/chromosome arms whole genome sequences of common wheat and its diploid and tetraploid ancestors have been decoded along with the development of sequencing and assembling technologies. In this review, we give a brief summary on international progress in wheat genome sequencing, and mainly focus on reviewing the effort and contributions made by Chinese scientists.


July 7, 2019  |  

Development of molecular markers linked to powdery mildew resistance GenePm4bby combining SNP discovery from transcriptome sequencing data with bulked segregant analysis (BSR-Seq) in wheat.

Powdery mildew resistance genePm4b, originating fromTriticum persicum, is effective against the prevalentBlumeria graminisf. sp.tritici(Bgt) isolates from certain regions of wheat production in China. The lack of tightly linked molecular markers with the target gene prevents the precise identification ofPm4bduring the application of molecular marker-assisted selection (MAS). The strategy that combines the RNA-Seq technique and the bulked segregant analysis (BSR-Seq) was applied in an F2:3mapping population (237 families) derived from a pair of isogenic lines VPM1/7*Bainong 3217 F4(carryingPm4b) and Bainong 3217 to develop more closely linked molecular markers. RNA-Seq analysis of the two phenotypically contrasting RNA bulks prepared from the representative F2:3families generated 20,745,939 and 25,867,480 high-quality read pairs, and 82.8 and 80.2% of them were uniquely mapped to the wheat whole genome draft assembly for the resistant and susceptible RNA bulks, respectively. Variant calling identified 283,866 raw single nucleotide polymorphisms (SNPs) and InDels between the two bulks. The SNPs that were closely associated with the powdery mildew resistance were concentrated on chromosome 2AL. Among the 84 variants that were potentially associated with the disease resistance trait, 46 variants were enriched in an about 25 Mb region at the distal end of chromosome arm 2AL. FourPm4b-linked SNP markers were developed from these variants. Based on the sequences of Chinese Spring where these polymorphic SNPs were located, 98 SSR primer pairs were designed to develop distal markers flanking thePm4bgene. Three SSR markers,Xics13,Xics43, andXics76, were incorporated in the new genetic linkage map, which locatedPm4bin a 3.0 cM genetic interval spanning a 6.7 Mb physical genomic region. This region had a collinear relationship withBrachypodium distachyonchromosome 5, rice chromosome 4, and sorghum chromosome 6. Seven genes associated with disease resistance were predicted in this collinear genomic region, which included C2 domain protein, peroxidase activity protein, protein kinases of PKc_like super family, Mlo family protein, and catalytic domain of the serine/threonine kinases (STKc_IRAK like super family). The markers developed in the present study facilitate identification ofPm4bduring its MAS practice.


July 7, 2019  |  

Identification and expression analysis of wheat TaGF14 genes.

The 14-3-3 gene family members play key roles in various cellular processes. However, little is known about the numbers and roles of 14-3-3 genes in wheat. The aims of this study were to identify TaGF14 numbers in wheat by searching its whole genome through blast, to study the phylogenetic relationships with other plant species and to discuss the functions of TaGF14s. The results showed that common wheat harbored 20 TaGF14 genes, located on wheat chromosome groups 2, 3, 4, and 7. Out of them, eighteen TaGF14s are non-e proteins, and two wheat TaGF14 genes, TaGF14i and TaGF14f, are e proteins. Phylogenetic analysis indicated that these genes were divided into six clusters: cluster 1 (TaGF14d, TaGF14g, TaGF14j, TaGF14h, TaGF14c, and TaGF14n); cluster 2 (TaGF14k); cluster 3 (TaGF14b, TaGF14l, TaGF14m, and TaGF14s); cluster 4 (TaGF14a, TaGF14e, and TaGF14r); cluster 5 (TaGF14i and TaGF14f); and cluster 6 (TaGF14o, TaGF14p, TaGF14q, and TaGF14t). Tissue-specific gene expressions suggested that all TaGF14s were likely constitutively expressed, except two genes, i.e., TaGF14p and TaGF14f. And the highest amount of TaGF14 transcripts were observed in developing grains at 20 days post anthesis (DPA), especially for TaGF14j and TaGF14l. After drought stress, five genes, i.e., TaGF14c, TaGF14d, TaGF14g, TaGF14h, and TaGF14j, were up-regulated expression under drought stress for both 1 and 6 h, suggesting these genes played vital role in combating against drought stress. However, all the TaGF14s were down-regulated expression under heat stress for both 1 and 6 h, indicating TaGF14s may be negatively associated with heat stress by reducing the expression to combat heat stress or through other pathways. These results suggested that cluster 1, e.g., TaGF14j, may participate in the whole wheat developing stages, e.g., grain-filling (starch biosynthesis) and may also participate in combating against drought stress. Subsequently, a homolog of TaGF14j, TaGF14-JM22, were cloned by RACE and used to validate its function. Immunoblotting results showed that TaGF14-JM22 protein, closely related to TaGF14d, TaGF14g, and TaGF14j, can interact with AGP-L, SSI, SSII, SBEIIa, and SBEIIb in developing grains, suggesting that TaGF14s located on group 4 may be involved in starch biosynthesis. Therefore, it is possible to develop starch-rich wheat cultivars by modifying TaGF14s.


July 7, 2019  |  

Optimise wheat A-genome.

The wild einkorn wheat Triticum urartu (Tu) is the A-genome progenitor of tetraploid (AABB) and hexaploid (AABBDD) wheat. A draft genome of Tu was published in 2013, but a better reference sequence is urgently needed by scientists and breeders. Hong-Qing Ling, from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and colleagues have now completed a high-quality Tu genome using multiple methods.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.