fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Monday, September 6, 2021

Revealing Mechanisms of Bacterial Virulence and Adaptation with PacBio SMRT Sequencing

In this talk, speakers will describe the importance of high accuracy and long read length for generating closed bacterial assemblies. Speakers will also share examples of how hard-to-assemble domains and plasmids impact important biological traits including, pathogen virulence and anti-microbial resistance. Finally, they will provide an overview of the advantages of highly accurate long-read sequencing for outbreak tracking.

Read More »

Monday, August 23, 2021

Identifying Key Players in Host-Microbiome Interactions with High Resolution 16S Sequencing

In this talk, speakers provide an understanding of how highly accurate long-read sequencing of extended 16S amplicons enables the identification of metagenome community members at higher taxonomic resolution than short-read methods. You’ll also hear examples of how metagenome functions that impact human health can be driven by specific species or strains within a community and learn how the gut microbiome can impact drug efficacy.

Read More »

Wednesday, August 11, 2021

Resolving Viral Evolution and Quasispecies Diversity with HiFi Sequencing

In this talk, speakers provide an understanding HiFi sequencing methods for resolving viral diversity in complex systems, examples of how HiFi sequencing can phase entire viral genes or genomes, revealing quasispecies diversity within patients, and how combining fully-phased minor variant data with other data types provides insights into viral evolution, immune escape, and drug resistance.

Read More »

Tuesday, July 27, 2021

Optimizing for Information: What Richer Data and Better Assemblies Reveal About Metagenome Structure and Function

In this talk, speakers provide an overview of PacBio-recommended tools for metagenome sequencing analysis, where to download example test data, the typical performance for HiFi metagenome sequencing of fecal samples, the impact of read accuracy on metagenome assembly of long-read data, and finally, how deep sequencing that combines HiFi reads and Hi-C data can enormously increase recovery of high-quality MAGs and connect plasmids and viruses to host strains.

Read More »

Tuesday, June 1, 2021

Complete HIV-1 genomes from single molecules: Diversity estimates in two linked transmission pairs using clustering and mutual information.

We sequenced complete HIV-1 genomes from single molecules using Single Molecule, Real- Time (SMRT) Sequencing and derive de novo full-length genome sequences. SMRT sequencing yields long-read sequencing results from individual DNA molecules with a rapid time-to-result. These attributes make it a useful tool for continuous monitoring of viral populations. The single-molecule nature of the sequencing method allows us to estimate variant subspecies and relative abundances by counting methods. We detail mathematical techniques used in viral variant subspecies identification including clustering distance metrics and mutual information. Sequencing was performed in order to better understand the relationships between the specific sequences of…

Read More »

Tuesday, June 1, 2021

Rapid sequencing of HIV-1 genomes as single molecules from simple and complex samples.

Background: To better understand the relationships among HIV-1 viruses in linked transmission pairs, we sequenced several samples representing HIV transmission pairs from the Zambia Emory HIV Research Project (Lusaka, Zambia) using Single Molecule, Real-Time (SMRT) Sequencing. Methods: Single molecules were sequenced as full-length (9.6 kb) amplicons directly from PCR products without shearing. This resulted in multiple, fully-phased, complete HIV-1 genomes for each patient. We examined Single Genome Amplification (SGA) prepped samples, as well as samples containing complex mixtures of genomes. We detail mathematical techniques used in viral variant subspecies identification, including clustering distance metrics and mutual information, which were used…

Read More »

Tuesday, June 1, 2021

A comparison of 454 GS FLX Ti and PacBio RS in the context of characterizing HIV-1 intra-host diversity.

PacBio 2013 User Group Meeting Presentation Slides: Lance Hepler from UC San Diego’s Center for AIDS Research used the PacBio RS to study intra-host diversity in HIV-1. He compared PacBio’s performance to that of 454® sequencer, the platform he and his team previously used. Hepler noted that in general, there was strong agreement between the platforms; where results differed, he said that PacBio data had significantly better reproducibility and accuracy. “PacBio does not suffer from local coverage loss post-processing, whereas 454 has homopolymer problems,” he noted. Hepler said they are moving away from using 454 in favor of the PacBio…

Read More »

1 2 3 15

Subscribe for blog updates:

Archives