fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, June 15, 2021

Uncovering Neurological Disorders Through an Examination of VNTRs

Many neurological diseases result from expansion of unstable variable nucleotide tandem repeats (VNTRs) that influence gene transcription of neighboring genes. In this talk, Dr. Henne Holstege presents research that investigated VNTRs across several genomes including a 115-year-old cognitively healthy individual. She and her group found that the genes that contained most VNTRs, of which PTPRN2 and DLGAP2 are the most prominent examples, were found to be predominantly expressed in the brain and associated with a wide variety of neurological disorders.

Read More »

Tuesday, June 15, 2021

Long-read Sequencing to Assess an Expanded Repeat in C9orf72

In this presentation, Dr. Marka van Blitterswijk shares the exciting results of her most recent targeted long-read sequencing study. Together with her colleagues, she performed No-Amp sequencing to examine an expanded GGGGCC-repeat in C9orf72, which causes fatal neurodegenerative diseases. Her team assessed the length of the C9orf72 expansion, as well as the presence of interruptions, thus revealing relevant clinico-pathological associations and demonstrating how powerful No-Amp sequencing is.

Read More »

Tuesday, June 15, 2021

The Evolution and Function of a Large Tandem Repeat Associated with ALS

In this talk, Dr. Meredith Course presents her research on uncovering a 69-bp human-specific tandem repeat expansion in the final intron of WDR7. Larger repeat copy number is significantly associated with sporadic ALS cases, suggesting that it plays a role in disease susceptibility. Long-read sequencing reveals remarkable internal nucleotide variation, which was harnessed to determine the evolutionary origin of the expansion, its mechanism of replication, and its current state in modern-day humans. Each copy of the repeat has been determined to be able to form microRNAs and aggregate in cells and may sequester ALS-related RNA-binding proteins.

Read More »

Tuesday, June 15, 2021

Improving the Prognosis and Genetic Counseling in DM1 Patients

In this talk, Dr. Stephanie Tome describes using PacBio Single Molecule, Real-Time (SMRT) Sequencing to precisely measure large CTG repeat size and identify sequence interruptions of expanded allele to understand clinical and genetic variability in DM1 patients, sequencing several DM1 patients with CTG repeat expansion ranging from 130 to > 1000 CTG repeats on the Sequel I and II Systems from amplicons. She obtained more than 77% full DM1 reads per sample, with >70% of the reads from expanded alleles. The data includes long reads in the expected size range for all samples, including DM1 patients with more than 1000…

Read More »

Tuesday, June 15, 2021

Multiplex, Long-Read Sequencing of Ataxia Repeat Expansions

In this talk, Dr. Zachary McEachin describes how No-Amp targeted sequencing enables sequencing analysis of multiple (at least 15) Ataxia-related repeat expansion loci in one assay, presenting example sequencing results with selected samples from Ataxia patients and patients with unknown diagnostics. He demonstrates how PacBio HiFi sequencing with the No-Amp approach could provide repeat expansion and sequence interruption information at the target loci that is not available with PCR or southern-blot based diagnostics assays.

Read More »

Tuesday, June 15, 2021

Long-read Sequencing and Optical Mapping of ATXN10 Repeat Expansion

Spinocerebellar ataxia type 10 (SCA10) is a rare autosomal-dominant disorder caused by an expanded intronic pentanucleotide repeat in the ATXN10 gene. This repeat expansion when fully penetrant can be typically expected between 850 and 4500 repeats or 4.25 to 22.5 kb. Current diagnostic assays using PCR-based methods or Southern blotting cannot accurately size or resolve the genomic structure of the ATXN10 repeat. In this talk, Dr. Birgitt Schuele elaborates that CRISPR-Cas9 enrichment/single molecule real time (SMRT) sequencing technology and optical mapping now allow for accurate sizing of the repeat expansion, repeat composition, and can resolve somatic mosaicism, which are critical…

Read More »

Tuesday, June 15, 2021

Altered Alternative Splicing Process in FMR1 Premutation Carriers

In this talk, Dr. Flora Tassone focuses on the identification of alternative splicing isoforms at the FMR1 locus (both sense and antisense direction) in individual carriers of the FMR1 premutation allele, using the SMRT Sequencing approach. The characterization of a transcriptional profile could help to define a biomarker for monitoring disease progression and development.

Read More »

Friday, June 4, 2021

Advancing Pharmacogenomics Research and the Need for Highly Accurate Long-Read Sequencing

Through Pharmacogenomics (PGx), we can explore how a person’s genome affects their response to drugs to enable the development of safe and effective medications tailored to their genetic makeup. In this talk, you’ll learn how PacBio HiFi sequencing: is cost-effective and highly accurate; enables comprehensive interrogation of pharmacogenomics genes—detecting all types of variants even in challenging regions; allows for the sequencing of pharmacogenomics genes as single-gene assays or large panels; produces data that is highly concordant with other technologies—adding value through comprehensive variant detection, copy number assessment, and phasing.

Read More »

Monday, May 24, 2021

PacBio Data Deep Dive: A Closer Look at HiFi Sequencing

The Sequel IIe System produces highly accurate long reads (HiFi reads) quickly and cost-effectively thanks to increased computational capacity and on-instrument data processing. This results in a significant reduction of overall secondary analysis time and reduces the computational needs in terms of file transfer and data storage. This webinar provides an overview of PacBio data for beginner and advanced users of HiFi reads, exploring the content of PacBio BAM files, providing examples of how HiFi reads can be filtered, and going through recommendations for downstream analysis.

Read More »

Monday, May 24, 2021

DNA and Sample Preparation for PacBio HiFi Sequencing – Best Practices and FAQ

With highly accurate long reads (HiFi reads) of >99% accuracy, the Sequel IIe System is the tool of choice for producing reference quality assemblies, calling variants with the highest precision, reading full-length transcripts, characterizing isoform diversity, and many more applications. To maximize the quality of your results, DNA and sample preparation are critical steps in your sequencing workflow. In this webinar we cover the following points: preparing DNA for PacBio HiFi sequencing, selecting the right HiFi library preparation protocol for your project, and interpreting sequencing metrics and troubleshooting.

Read More »

Monday, May 24, 2021

Complete and Accurate Human Genomes with HiFi Reads

In this CSHL Biology of Genomes 2021 virtual workshop, Aaron Wenger from PacBio discusses examples of how advances in highly accurate long-read (HiFi) sequencing have enabled exciting developments in human genome research, including sequencing the genomes of 100 individuals with unexplained diseases.

Read More »

1 2 3 13

Subscribe for blog updates:

Archives