X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
March 1, 2019

Extended insight into the Mycobacterium chelonae-abscessus complex through whole genome sequencing of Mycobacterium salmoniphilum outbreak and Mycobacterium salmoniphilum-like strains.

Members of the Mycobacterium chelonae-abscessus complex (MCAC) are close to the mycobacterial ancestor and includes both human, animal and fish pathogens. We present the genomes of 14 members of this complex: the complete genomes of Mycobacterium salmoniphilum and Mycobacterium chelonae type strains, seven M. salmoniphilum isolates, and five M. salmoniphilum-like strains including strains isolated during an outbreak in an animal facility at Uppsala University. Average nucleotide identity (ANI) analysis and core gene phylogeny revealed that the M. salmoniphilum-like strains are variants of the human pathogen Mycobacterium franklinii and phylogenetically close to Mycobacterium abscessus. Our data further suggested that M. salmoniphilum…

Read More »

October 1, 2018

De novo assembly of two Swedish genomes reveals missing segments from the human GRCh38 reference and improves variant calling of population-scale sequencing data.

The current human reference sequence (GRCh38) is a foundation for large-scale sequencing projects. However, recent studies have suggested that GRCh38 may be incomplete and give a suboptimal representation of specific population groups. Here, we performed a de novo assembly of two Swedish genomes that revealed over 10 Mb of sequences absent from the human GRCh38 reference in each individual. Around 6 Mb of these novel sequences (NS) are shared with a Chinese personal genome. The NS are highly repetitive, have an elevated GC-content, and are primarily located in centromeric or telomeric regions. Up to 1 Mb of NS can be…

Read More »

September 1, 2018

Exploring benzimidazole resistance in Haemonchus contortus by next generation sequencing and droplet digital PCR.

Anthelmintic resistance in gastrointestinal nematode (GIN) parasites of grazing ruminants is on the rise in countries across the world. Haemonchus contortus is one of most frequently encountered drug-resistant GINs in small ruminants. This blood-sucking abomasal nematode contributes to massive treatment costs and poses a serious threat to farm animal health. To prevent the establishment of resistant strains of this parasite, up-to-date molecular techniques need to be proposed which would allow for quick, cheap and accurate identification of individuals infected with resistant worms. The effort has been made in the previous decade, with the development of the pyrosequencing method to detect…

Read More »

June 4, 2018

Nanoarrays on passivated aluminum surface for site-specific immobilization of biomolecules

The rapid development of biosensing platforms for highly sensitive and specific detection raises the desire of precise localization of biomolecules onto various material surfaces. Aluminum has been strategically employed in the biosensor system due to its compatibility with CMOS technology and its optical and electrical properties such as prominent propagation of surface plasmons. Herein, we present an adaptable method for preparation of carbon nanoarrays on aluminum surface passivated with poly(vinylphosphonic acid) (PVPA). The carbon nanoarrays were defined by means of electron beam induced deposition (EBID) and they were employed to realize site-specific immobilization of target biomolecules. To demonstrate the concept,…

Read More »

May 29, 2018

Webinar: Assembling high-quality human reference genomes for global populations

This webinar highlights global initiatives currently underway to use Single Molecule, Real-Time (SMRT) Sequencing to de novo assemble genomes of individuals representing multiple ethnic populations, thereby extending the diversity of available human reference genomes. In their presentations, Tina Graves-Lindsay from Washington University and Adam Ameur from Uppsala University spoke about diploid assemblies, discovering novel sequence and improving diversity of the current human reference genome. Finally, Paul Peluso of PacBio presented data from the recent effort to sequence a Puerto Rican genome and shared a SMRT Sequencing technology roadmap showing the next several upgrades for the Sequel System.

Read More »

May 1, 2018

Increasing sorghum yields by seed treatment with an aqueous extract of the plant Eclipta alba may involve a dual mechanism of hydropriming and suppression of fungal pathogens

Background Soaking of sorghum seeds for six hours in an aqueous extract of Eclipta alba has been shown to increase the yield of sorghum in field experiments. The effect on yield is known to depend on field location and a mechanism involving pathogen suppression has been proposed. However, it has not been clear to which extent the same effect can be obtained by soaking of seeds in pure water (hydropriming). To address this question, fifty eight field tests were conducted comparing no treatment of seeds, hydropriming and treatment with plant extract. Experiments were distributed over three years in Burkina Faso…

Read More »

March 1, 2018

Targeted long-read sequencing of a locus under long-term balancing selection in Capsella.

Rapid advances in short-read DNA sequencing technologies have revolutionized population genomic studies, but there are genomic regions where this technology reaches its limits. Limitations mostly arise due to the difficulties in assembly or alignment to genomic regions of high sequence divergence and high repeat content, which are typical characteristics for loci under strong long-term balancing selection. Studying genetic diversity at such loci therefore remains challenging. Here, we investigate the feasibility and error rates associated with targeted long-read sequencing of a locus under balancing selection. For this purpose, we generated bacterial artificial chromosomes (BACs) containing the Brassicaceae S-locus, a region under…

Read More »

January 6, 2018

Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste.

Evolution has provided environmental bacteria with a plethora of genes that give resistance to antibiotic compounds. Under anthropogenic selection pressures, some of these genes are believed to be recruited over time into pathogens by horizontal gene transfer. River sediment polluted with fluoroquinolones and other drugs discharged from bulk drug production in India constitute an environment with unprecedented, long-term antibiotic selection pressures. It is therefore plausible that previously unknown resistance genes have evolved and/or are promoted here. In order to search for novel resistance genes, we therefore analyzed such river sediments by a functional metagenomics approach. DNA fragments providing resistance to…

Read More »

December 8, 2017

A blaOXA-181-harbouring multi-resistant ST147 Klebsiella pneumoniae isolate from Pakistan that represent an intermediate stage towards pan-drug resistance.

Carbapenem resistant Klebsiella pneumoniae (CR-KP) infections are an ever-increasing global issue, especially in the Indian subcontinent. Here we report genetic insight into a blaOXA-181 harbouring Klebsiella pneumoniae, belonging to the pandemic lineage ST147, that represents an intermediate stage towards pan-drug resistance. The CR-KP isolate DA48896 was isolated from a patient from Pakistan and was susceptible only to tigecycline and colistin. It harboured blaOXA-181 and was assigned to sequence type ST147. Analysis from whole genome sequencing revealed a very high sequence similarity to the previously sequenced pan-resistant K. pneumoniae isolate MS6671 from the United Arab Emirates. The two isolates are very…

Read More »

November 1, 2017

PipeCraft: Flexible open-source toolkit for bioinformatics analysis of custom high-throughput amplicon sequencing data.

High-throughput sequencing methods have become a routine analysis tool in environmental sciences as well as in public and private sector. These methods provide vast amount of data, which need to be analysed in several steps. Although the bioinformatics may be applied using several public tools, many analytical pipelines allow too few options for the optimal analysis for more complicated or customized designs. Here, we introduce PipeCraft, a flexible and handy bioinformatics pipeline with a user-friendly graphical interface that links several public tools for analysing amplicon sequencing data. Users are able to customize the pipeline by selecting the most suitable tools…

Read More »

November 1, 2017

A novel approach using long-read sequencing and ddPCR to investigate gonadal mosaicism and estimate recurrence risk in two families with developmental disorders.

De novo mutations contribute significantly to severe early-onset genetic disorders. Even if the mutation is apparently de novo, there is a recurrence risk due to parental germ line mosaicism, depending on in which gonadal generation the mutation occurred.We demonstrate the power of using SMRT sequencing and ddPCR to determine parental origin and allele frequencies of de novo mutations in germ cells in two families whom had undergone assisted reproduction.In the first family, a TCOF1 variant c.3156C>T was identified in the proband with Treacher Collins syndrome. The variant affects splicing and was determined to be of paternal origin. It was present…

Read More »

October 26, 2017

Large-scale suppression of recombination predates genomic rearrangements in Neurospora tetrasperma.

A common feature of eukaryote genomes is large chromosomal regions where recombination is absent or strongly reduced, but the factors that cause this reduction are not well understood. Genomic rearrangements have often been implicated, but they may also be a consequence of recombination suppression rather than a cause. In this study, we generate eight high-quality genomic data sets of the filamentous ascomycete Neurospora tetrasperma, a fungus that lacks recombination over most of its largest chromosome. The genomes surprisingly reveal collinearity of the non-recombining regions and although large inversions are enriched in these regions, we conclude these inversions to be derived…

Read More »

September 4, 2017

Fluorescent CRISPR Adaptation Reporter for rapid quantification of spacer acquisition.

CRISPR-Cas systems are adaptive prokaryotic immune systems protecting against horizontally transferred DNA or RNA such as viruses and other mobile genetic elements. Memory of past invaders is stored as spacers in CRISPR loci in a process called adaptation. Here we developed a novel assay where spacer integration results in fluorescence, enabling detection of memory formation in single cells and quantification of as few as 0.05% cells with expanded CRISPR arrays in a bacterial population. Using this fluorescent CRISPR Adaptation Reporter (f-CAR), we quantified adaptation of the two CRISPR arrays of the type I-E CRISPR-Cas system in Escherichia coli, and confirmed…

Read More »

1 2

Subscribe for blog updates:

Archives