September 22, 2019  |  

High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation.

The extent to which alternative splicing and long intergenic noncoding RNAs (lincRNAs) contribute to the specialized functions of cells within an organ is poorly understood. We generated a comprehensive dataset of gene expression from individual cell types of the Arabidopsis root. Comparisons across cell types revealed that alternative splicing tends to remove parts of coding regions from a longer, major isoform, providing evidence for a progressive mechanism of splicing. Cell-type-specific intron retention suggested a possible origin for this common form of alternative splicing. Coordinated alternative splicing across developmental stages pointed to a role in regulating differentiation. Consistent with this hypothesis, distinct isoforms of a transcription factor were shown to control developmental transitions. lincRNAs were generally lowly expressed at the level of individual cell types, but co-expression clusters provided clues as to their function. Our results highlight insights gained from analysis of expression at the level of individual cell types. Copyright © 2016 Elsevier Inc. All rights reserved.

September 22, 2019  |  

A community-based culture collection for targeting novel plant growth-promoting bacteria from the sugarcane microbiome.

The soil-plant ecosystem harbors an immense microbial diversity that challenges investigative approaches to study traits underlying plant-microbe association. Studies solely based on culture-dependent techniques have overlooked most microbial diversity. Here we describe the concomitant use of culture-dependent and -independent techniques to target plant-beneficial microbial groups from the sugarcane microbiome. The community-based culture collection (CBC) approach was used to access microbes from roots and stalks. The CBC recovered 399 unique bacteria representing 15.9% of the rhizosphere core microbiome and 61.6-65.3% of the endophytic core microbiomes of stalks. By cross-referencing the CBC (culture-dependent) with the sugarcane microbiome profile (culture-independent), we designed a synthetic community comprised of naturally occurring highly abundant bacterial groups from roots and stalks, most of which has been poorly explored so far. We then used maize as a model to probe the abundance-based synthetic inoculant. We show that when inoculated in maize plants, members of the synthetic community efficiently colonize plant organs, displace the natural microbiota and dominate at 53.9% of the rhizosphere microbial abundance. As a result, inoculated plants increased biomass by 3.4-fold as compared to uninoculated plants. The results demonstrate that abundance-based synthetic inoculants can be successfully applied to recover beneficial plant microbes from plant microbiota.

September 22, 2019  |  

Multiplex amplicon sequencing for microbe identification in community-based culture collections.

Microbiome analysis using metagenomic sequencing has revealed a vast microbial diversity associated with plants. Identifying the molecular functions associated with microbiome-plant interaction is a significant challenge concerning the development of microbiome-derived technologies applied to agriculture. An alternative to accelerate the discovery of the microbiome benefits to plants is to construct microbial culture collections concomitant with accessing microbial community structure and abundance. However, traditional methods of isolation, cultivation, and identification of microbes are time-consuming and expensive. Here we describe a method for identification of microbes in culture collections constructed by picking colonies from primary platings that may contain single or multiple microorganisms, which we named community-based culture collections (CBC). A multiplexing 16S rRNA gene amplicon sequencing based on two-step PCR amplifications with tagged primers for plates, rows, and columns allowed the identification of the microbial composition regardless if the well contains single or multiple microorganisms. The multiplexing system enables pooling amplicons into a single tube. The sequencing performed on the PacBio platform led to recovery near-full-length 16S rRNA gene sequences allowing accurate identification of microorganism composition in each plate well. Cross-referencing with plant microbiome structure and abundance allowed the estimation of diversity and abundance representation of microorganism in the CBC.

September 22, 2019  |  

Contemporary evolution of a Lepidopteran species, Heliothis virescens, in response to modern agricultural practices.

Adaptation to human-induced environmental change has the potential to profoundly influence the genomic architecture of affected species. This is particularly true in agricultural ecosystems, where anthropogenic selection pressure is strong. Heliothis virescens primarily feeds on cotton in its larval stages, and US populations have been declining since the widespread planting of transgenic cotton, which endogenously expresses proteins derived from Bacillus thuringiensis (Bt). No physiological adaptation to Bt toxin has been found in the field, so adaptation in this altered environment could involve (i) shifts in host plant selection mechanisms to avoid cotton, (ii) changes in detoxification mechanisms required for cotton-feeding vs. feeding on other hosts or (iii) loss of resistance to previously used management practices including insecticides. Here, we begin to address whether such changes occurred in H. virescens populations between 1997 and 2012, as Bt-cotton cultivation spread through the agricultural landscape. For our study, we produced an H. virescens genome assembly and used this in concert with a ddRAD-seq-enabled genome scan to identify loci with significant allele frequency changes over the 15-year period. Genetic changes at a previously described H. virescens insecticide target of selection were detectable in our genome scan and increased our confidence in this methodology. Additional loci were also detected as being under selection, and we quantified the selection strength required to elicit observed allele frequency changes at each locus. Potential contributions of genes near loci under selection to adaptive phenotypes in the H. virescens cotton system are discussed.© 2017 John Wiley & Sons Ltd.

September 22, 2019  |  

Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus.

The copepod Tigriopus californicus shows extensive population divergence and is becoming a model for understanding allopatric differentiation and the early stages of speciation. Here, we report a high-quality reference genome for one population (~190?megabases across 12 scaffolds, and ~15,500 protein-coding genes). Comparison with other arthropods reveals 2,526 genes presumed to be specific to T. californicus, with an apparent proliferation of genes involved in ion transport and receptor activity. Beyond the reference population, we report re-sequenced genomes of seven additional populations, spanning the continuum of reproductive isolation. Populations show extreme mitochondrial DNA divergence, with higher levels of amino acid differentiation than observed in other taxa. Across the nuclear genome, we find elevated protein evolutionary rates and positive selection in genes predicted to interact with mitochondrial DNA and the proteins and RNA it encodes in multiple pathways. Together, these results support the hypothesis that rapid mitochondrial evolution drives compensatory nuclear evolution within isolated populations, thereby providing a potentially important mechanism for causing intrinsic reproductive isolation.

July 19, 2019  |  

Increased risk of low birth weight in women with placental malaria associated with P. falciparum VAR2CSA clade.

Pregnancy associated malaria (PAM) causes adverse pregnancy and birth outcomes owing to Plasmodium falciparum accumulation in the placenta. Placental accumulation is mediated by P. falciparum protein VAR2CSA, a leading PAM-specific vaccine target. The extent of its antigen diversity and impact on clinical outcomes remain poorly understood. Through amplicon deep-sequencing placental malaria samples from women in Malawi and Benin, we assessed sequence diversity of VAR2CSA’s ID1-DBL2x region, containing putative vaccine targets and estimated associations of specific clades with adverse birth outcomes. Overall, var2csa diversity was high and haplotypes subdivided into five clades, the largest two defined by homology to parasites strains, 3D7 or FCR3. Across both cohorts, compared to women infected with only FCR3-like variants, women infected with only 3D7-like variants delivered infants with lower birthweight (difference: -267.99?g; 95% Confidence Interval [CI]: -466.43?g,-69.55?g) and higher odds of low birthweight (<2500?g) (Odds Ratio [OR] 5.41; 95% CI:0.99,29.52) and small-for-gestational-age (OR: 3.65; 95% CI: 1.01,13.38). In two distinct malaria-endemic African settings, parasites harboring 3D7-like variants of VAR2CSA were associated with worse birth outcomes, supporting differential effects of infection with specific parasite strains. The immense diversity coupled with differential clinical effects of this diversity suggest that an effective VAR2CSA-based vaccine may require multivalent activity.

July 7, 2019  |  

Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade.

Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes.

July 7, 2019  |  

Analysis of the genome and mobilome of a dissimilatory arsenate reducing Aeromonas sp. O23A reveals multiple mechanisms for heavy metal resistance and metabolism.

Aeromonas spp. are among the most ubiquitous microorganisms, as they have been isolated from different environmental niches including waters, soil, as well as wounds and digestive tracts of poikilothermic animals and humans. Although much attention has been paid to the pathogenicity of Aeromonads, the role of these bacteria in environmentally important processes, such as transformation of heavy metals, remains to be discovered. Therefore, the aim of this study was a detailed genomic characterization of Aeromonas sp. O23A, the first representative of this genus capable of dissimilatory arsenate reduction. The strain was isolated from microbial mats from the Zloty Stok mine (SW Poland), an environment strongly contaminated with arsenic. Previous physiological studies indicated that O23A may be involved in both mobilization and immobilization of this metalloid in the environment. To discover the molecular basis of the mechanisms behind the observed abilities, the genome of O23A (~5.0 Mbp) was sequenced and annotated, and genes for arsenic respiration, heavy metal resistance (hmr) and other phenotypic traits, including siderophore production, were identified. The functionality of the indicated gene modules was assessed in a series of minimal inhibitory concentration analyses for various metals and metalloids, as well as mineral dissolution experiments. Interestingly, comparative analyses revealed that O23A is related to a fish pathogen Aeromonas salmonicida subsp. salmonicida A449 which, however, does not carry genes for arsenic respiration. This indicates that the dissimilatory arsenate reduction ability may have been lost during genome reduction in pathogenic strains, or acquired through horizontal gene transfer. Therefore, particular emphasis was placed upon the mobilome of O23A, consisting of four plasmids, a phage, and numerous transposable elements, which may play a role in the dissemination of hmr and arsenic metabolism genes in the environment. The obtained results indicate that Aeromonas sp. O23A is well-adapted to the extreme environmental conditions occurring in the Zloty Stok mine. The analysis of genome encoded traits allowed for a better understanding of the mechanisms of adaptation of the strain, also with respect to its presumable role in colonization and remediation of arsenic-contaminated waters, which may never have been discovered based on physiological analyses alone.

July 7, 2019  |  

Reply to Bemm et al. and Arakawa: Identifying foreign genes in independent Hypsibius dujardini genome assemblies.

Our report (1) describing the discovery of extensive horizontal gene transfer in a tardigrade genome has raised questions from other groups who were sequencing the Hypsibius dujardini genome in parallel or who have done new experiments and analyses since our report (2??–5). Bemm et al. (2) now report filtering our data for likely contaminants, resulting in a new, prefiltered genome assembly. Arakawa (3) has sequenced genomes of starved, washed, individual animals that had been treated with antibiotics for 48 h, and used this genomic sequence and RNA-Seq data to identify likely bona fide tardigrade contigs. Two other reports have contributed data and analysis: Delmont and Eren (4) used a newly published analysis and visualization platform, Anvi’o (6), to identify likely contaminants in our genome assembly, and Koutsovoulos et al. (5) applied useful taxon-annotated GC coverage plots (Blobplots) (7) to our data and reported an independent genome assembly.

July 7, 2019  |  

Improved long read correction for de novo assembly using an FM-index

Long read sequencing is changing the landscape of genomic research, especially de novo assembly. Despite the high error rate inherent to long read technologies, increased read lengths dramatically improve the continuity and accuracy of genome assemblies. However, the cost and throughput of these technologies limits their application to complex genomes. One solution is to decrease the cost and time to assemble novel genomes by leveraging textquotedbllefthybridtextquotedblright assemblies that use long reads for scaffolding and short reads for accuracy. To this end, we describe a novel application of a multi-string Burrows-Wheeler transform with auxiliary FM-index to correct errors in long read sequences using a set of complementary short reads. We show that our method efficiently produces significantly higher quality corrected sequence than existing hybrid error-correction methods. We demonstrate the effectiveness of our method compared to state-of-the-art hybrid and long-read only de novo assembly methods.

July 7, 2019  |  

Transfer of the methicillin resistance genomic island among staphylococci by conjugation.

Methicillin resistance creates a major obstacle for treatment of Staphylococcus aureus infections. The resistance gene, mecA, is carried on a large (20 kb to?>?60 kb) genomic island, staphylococcal cassette chromosome mec (SCCmec), that excises from and inserts site-specifically into the staphylococcal chromosome. However, although SCCmec has been designated a mobile genetic element, a mechanism for its transfer has not been defined. Here we demonstrate the capture and conjugative transfer of excised SCCmec. SCCmec was captured on pGO400, a mupirocin-resistant derivative of the pGO1/pSK41 staphylococcal conjugative plasmid lineage, and pGO400::SCCmec (pRM27) was transferred by filter-mating into both homologous and heterologous S. aureus recipients representing a range of clonal complexes as well as S. epidermidis. The DNA sequence of pRM27 showed that SCCmec had been transferred in its entirety and that its capture had occurred by recombination between IS257/431 elements present on all SCCmec types and pGO1/pSK41 conjugative plasmids. The captured SCCmec excised from the plasmid and inserted site-specifically into the chromosomal att site of both an isogenic S. aureus and a S. epidermidis recipient. These studies describe a means by which methicillin resistance can be environmentally disseminated and a novel mechanism, IS-mediated recombination, for the capture and conjugative transfer of genomic islands. © 2016 John Wiley & Sons Ltd.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.