September 22, 2019  |  

Discovery of mcr-1-mediated colistin resistance in a highly virulent Escherichia coli lineage.

Resistance to last-line polymyxins mediated by the plasmid-borne mobile colistin resistance gene (mcr-1) represents a new threat to global human health. Here we present the complete genome sequence of an mcr-1-positive multidrug-resistant Escherichia coli strain (MS8345). We show that MS8345 belongs to serotype O2:K1:H4, has a large 241,164-bp IncHI2 plasmid that carries 15 other antibiotic resistance genes (including the extended-spectrum ß-lactamase blaCTX-M-1) and 3 putative multidrug efflux systems, and contains 14 chromosomally encoded antibiotic resistance genes. MS8345 also carries a large ColV-like virulence plasmid that has been associated with E. coli bacteremia. Whole-genome phylogeny revealed that MS8345 clusters within a discrete clade in the sequence type 95 (ST95) lineage, and MS8345 is very closely related to the highly virulent O45:K1:H4 clone associated with neonatal meningitis. Overall, the acquisition of a plasmid carrying resistance to colistin and multiple other antibiotics in this virulent E. coli lineage is concerning and might herald an era where the empirical treatment of ST95 infections becomes increasingly more difficult.IMPORTANCEEscherichia coli ST95 is a globally disseminated clone frequently associated with bloodstream infections and neonatal meningitis. However, the ST95 lineage is defined by low levels of drug resistance amongst clinical isolates, which normally provides for uncomplicated treatment options. Here, we provide the first detailed genomic analysis of an E. coli ST95 isolate that has both high virulence potential and resistance to multiple antibiotics. Using the genome, we predicted its virulence and antibiotic resistance mechanisms, which include resistance to last-line antibiotics mediated by the plasmid-borne mcr-1 gene. Finding an ST95 isolate resistant to nearly all antibiotics that also has a high virulence potential is of major clinical importance and underscores the need to monitor new and emerging trends in antibiotic resistance development in this important global lineage. Copyright © 2018 Forde et al.


July 7, 2019  |  

Complete genome sequence of a Legionella longbeachae serogroup 1 strain isolated from a patient with Legionnaires’ disease.

Legionella longbeachae serogroup 1, predominantly found in soil and composted plant material, causes the majority of cases of Legionnaires’ disease (LD) in New Zealand. Here, we report the complete genome sequence of an L. longbeachae serogroup 1 (sg1) isolate derived from a patient hospitalized with LD in Christchurch, New Zealand. Copyright © 2017 Slow et al.


July 7, 2019  |  

Rapid emergence and evolution of Staphylococcus aureus clones harbouring fusC-containing Staphylococcal cassette chromosome elements.

The prevalence of fusidic acid (FA) resistance amongst Staphylococcus aureus in New Zealand (NZ) is amongst the highest reported globally, with a recent study describing a resistance rate of approximately 28%. Three FA-resistant S. aureus clones (ST5 MRSA, ST1 MSSA and ST1 MRSA) have emerged over the past decade and now predominate in NZ, and in all three clones FA resistance is mediated by the fusC gene. In particular, ST5 MRSA has rapidly become the dominant MRSA clone in NZ, although the origin of FA-resistant ST5 MRSA has not been explored, and the genetic context of fusC in FA-resistant NZ isolates is unknown. To better understand the rapid emergence of FA-resistant S. aureus, we used population-based comparative genomics to characterise a collection of FA-resistant and FA-susceptible isolates from NZ. FA-resistant NZ ST5 MRSA displayed minimal genetic diversity, and represented a phylogenetically distinct clade within a global population model of clonal complex 5 (CC5) S. aureus. In all lineages, fusC was invariably located within staphylococcal cassette chromosome (SCC) elements, suggesting that SCC-mediated horizontal transfer is the primary mechanism of fusC dissemination. The genotypic association of fusC with mecA has important implications for the emergence of MRSA clones in populations with high usage of fusidic acid. In addition, we found that fusC was co-located with a recently described virulence factor (tirS) in dominant NZ S. aureus clones, suggesting a potential fitness advantage. This study points to the likely molecular mechanisms responsible for the successful emergence and spread of FA-resistant S. aureus. Copyright © 2016 Baines et al.


July 7, 2019  |  

Isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica Typhimurium from cats.

Carbapenem-resistant Enterobacteriaceae (CRE) are a pressing public health issue due to limited therapeutic options to treat such infections. CREs have been predominantly isolated from humans and environmental samples and they are rarely reported among companion animals. In this study we report on the isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica Typhimurium from a companion animal. Carbapenemase-producing S. enterica Typhimurium carrying blaIMP-4 was identified from a systemically unwell (index) cat and three additional cats at an animal shelter. All isolates were identical and belonged to ST19. Genome sequencing revealed the acquisition of a multidrug-resistant IncHI2 plasmid (pIMP4-SEM1) that encoded resistance to nine antimicrobial classes including carbapenems and carried the blaIMP-4-qacG-aacA4-catB3 cassette array. The plasmid also encoded resistance to arsenic (MIC-150?mM). Comparative analysis revealed that the plasmid pIMP4-SEM1 showed greatest similarity to two blaIMP-8 carrying IncHI2 plasmids from Enterobacter spp. isolated from humans in China. This is the first report of CRE carrying a blaIMP-4 gene causing a clinical infection in a companion animal, with presumed nosocomial spread. This study illustrates the broader community risk entailed in escalating CRE transmission within a zoonotic species such as Salmonella, and in a cycle that encompasses humans, animals and the environment.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.