Menu
July 7, 2019  |  

Complete genome sequence of Clostridium perfringens LLY_N11, a necrotic enteritis-inducing strain isolated from a healthy chicken intestine.

Clostridium perfringens strain LLY_N11, a commensal bacterium, which previously induced necrotic enteritis in an experimental study, was isolated from the intestine of a young healthy chicken. Here, we present the complete genome sequence of this strain, which may provide a better understanding of the molecular mechanisms involved in necrotic enteritis pathogenesis.


July 7, 2019  |  

Genomic variation and evolution of Vibrio parahaemolyticus ST36 over the course of a transcontinental epidemic expansion.

Vibrio parahaemolyticus is the leading cause of seafood-related infections with illnesses undergoing a geographic expansion. In this process of expansion, the most fundamental change has been the transition from infections caused by local strains to the surge of pandemic clonal types. Pandemic clone sequence type 3 (ST3) was the only example of transcontinental spreading until 2012, when ST36 was detected outside the region where it is endemic in the U.S. Pacific Northwest causing infections along the U.S. northeast coast and Spain. Here, we used genome-wide analyses to reconstruct the evolutionary history of the V. parahaemolyticus ST36 clone over the course of its geographic expansion during the previous 25 years. The origin of this lineage was estimated to be in ~1985. By 1995, a new variant emerged in the region and quickly replaced the old clone, which has not been detected since 2000. The new Pacific Northwest (PNW) lineage was responsible for the first cases associated with this clone outside the Pacific Northwest region. After several introductions into the northeast coast, the new PNW clone differentiated into a highly dynamic group that continues to cause illness on the northeast coast of the United States. Surprisingly, the strains detected in Europe in 2012 diverged from this ancestral group around 2000 and have conserved genetic features present only in the old PNW lineage. Recombination was identified as the major driver of diversification, with some preliminary observations suggesting a trend toward a more specialized lifestyle, which may represent a critical element in the expansion of epidemics under scenarios of coastal warming.IMPORTANCEVibrio parahaemolyticus and Vibrio cholerae represent the only two instances of pandemic expansions of human pathogens originating in the marine environment. However, while the current pandemic of V. cholerae emerged more than 50 years ago, the global expansion of V. parahaemolyticus is a recent phenomenon. These modern expansions provide an exceptional opportunity to study the evolutionary process of these pathogens at first hand and gain an understanding of the mechanisms shaping the epidemic dynamics of these diseases, in particular, the emergence, dispersal, and successful introduction in new regions facilitating global spreading of infections. In this study, we used genomic analysis to examine the evolutionary divergence that has occurred over the course of the most recent transcontinental expansion of a pathogenic Vibrio, the spreading of the V. parahaemolyticus sequence type 36 clone from the region where it is endemic on the Pacific coast of North America to the east coast of the United States and finally to the west coast of Europe.


July 7, 2019  |  

Complete genome sequences of Clostridium perfringens Del1 strain isolated from chickens affected by necrotic enteritis.

Clostridium perfringens is ubiquitous in nature. It is a normal inhabitant in the intestinal tract of animals and humans. As the primary etiological agent of gas gangrene, necrosis and bacteremia, C. perfringens causes food poisoning, necrotic enteritis (NE), and even death. Epidemiology research has indicated that the increasing incidence of NE in poultry is associated with the withdrawal of in-feed antibiotic growth promoters in poultry production in response to government regulations. The recent omics studies have indicated that bacterial virulence is typically linked to highly efficient conjugative transfer of toxins, or plasmids carrying antibiotic-resistance traits. Currently, there is limited information on understanding of host-pathogen interaction in NE caused by virulent strains of C. perfringens. Elucidating such pathogenesis has practical impacts on fighting infectious diseases through adopting strategies of prophylactic or therapeutic interventions. In this report, we sequenced and analyzed the genome of C. perfringens Del1 strain using the hybrid of PacBio and Illumina sequencing technologies.Sequence analysis indicated that Del1 strain comprised a single circular chromosome with a complete 3,559,163 bp and 4 plasmids: pDel1_1 (82,596 bp), pDel1_2 (69,827 bp), pDel1_3 (49,582 bp), and pDel1_4 (49,728 bp). The genome had 3361 predicted coding DNA sequences, harbored numerous genes for pathogenesis and virulence factors, including 6 for antibiotic and antimicrobial resistance, and 3 phage-encoded genes. Phylogenetic analysis revealed that Del1 strain had similar genome and plasmid sequences to the CP4 strain.Complete chromosomal and plasmid sequences of Del1 strain are presented in this report. Since Del1 was isolated from a field disease outbreak, this strain is a good source to identify virulent genes that cause many damaging effects of Clostridial infections in chicken gut. Genome sequencing of the chicken pathogenic isolates from commercial farms provides valuable insights into the molecular pathogenesis of C. perfringens as a gastrointestinal pathogen in food animals. The detailed information on gene sequencing of this important field strain will benefit the development of novel vaccines specific for C. perfringens-induced NE in chickens.


July 7, 2019  |  

A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer.

Although human LINE-1 (L1) elements are actively mobilized in many cancers, a role for somatic L1 retrotransposition in tumor initiation has not been conclusively demonstrated. Here, we identify a novel somatic L1 insertion in the APC tumor suppressor gene that provided us with a unique opportunity to determine whether such insertions can actually initiate colorectal cancer (CRC), and if so, how this might occur. Our data support a model whereby a hot L1 source element on Chromosome 17 of the patient’s genome evaded somatic repression in normal colon tissues and thereby initiated CRC by mutating the APC gene. This insertion worked together with a point mutation in the second APC allele to initiate tumorigenesis through the classic two-hit CRC pathway. We also show that L1 source profiles vary considerably depending on the ancestry of an individual, and that population-specific hot L1 elements represent a novel form of cancer risk. © 2016 Scott et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment.

Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism’s physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi’) and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus’ are among the smallest known cellular organisms (100-300?nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea.


July 7, 2019  |  

Genome sequences of Ralstonia insidiosa type strain ATCC 49129 and strain FC1138, a strong biofilm producer isolated from a fresh-cut produce-processing plant.

Ralstonia insidiosa is an opportunistic pathogen and a strong biofilm producer. Here, we present the complete genome sequences of R. insidiosa FC1138 and ATCC 49129. Both strains have two circular chromosomes of approximately 3.9 and 1.9 Mb and a 50-kb plasmid. ATCC 49129 also possesses a megaplasmid of approximately 318 kb. Copyright © 2016 Xu et al.


July 7, 2019  |  

Complete genome sequence of Serratia marcescens U36365, a green pigment–producing strain isolated from a patient with urinary tract infection.

Serratia marcescens is an emerging nosocomial pathogen associated with urinary and respiratory tract infections. In this study, we determined the genome of a green pigment-producing clinical strain, U36365, isolated from a hospital in Southern India. De novo assembly of PacBio long-read sequencing indicates that the U36365 genome consists of a chromosome of 5.12 Mbps and no plasmids. Copyright © 2016 Sahni et al.


July 7, 2019  |  

Genome-directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum.

Clostridium pasteurianum is emerging as a prospective host for the production of biofuels and chemicals, and has recently been shown to directly consume electric current. Despite this growing biotechnological appeal, the organism’s genetics and central metabolism remain poorly understood. Here we present a concurrent genome sequence for the C. pasteurianum type strain and provide extensive genomic analysis of the organism’s defence mechanisms and central fermentative metabolism. Next generation genome sequencing produced reads corresponding to spontaneous excision of a novel phage, designated f6013, which could be induced using mitomycin C and detected using PCR and transmission electron microscopy. Methylome analysis of sequencing reads provided a near-complete glimpse into the organism’s restriction-modification systems. We also unveiled the chief C. pasteurianum Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus, which was found to exemplify a Type I-B system. Finally, we show that C. pasteurianum possesses a highly complex fermentative metabolism whereby the metabolic pathways enlisted by the cell is governed by the degree of reductance of the substrate. Four distinct fermentation profiles, ranging from exclusively acidogenic to predominantly alcohologenic, were observed through redox consideration of the substrate. A detailed discussion of the organism’s central metabolism within the context of metabolic engineering is provided.


July 7, 2019  |  

Plasmids from Shiga toxin-producing Escherichia coli strains with rare enterohemolysin gene (ehxA) subtypes reveal pathogenicity potential and display a novel evolutionary path.

Most Shiga toxin-producing Escherichia coli (STEC) strains associated with severe disease, such as hemolytic-uremic syndrome (HUS), carry large enterohemolysin-encoding (ehxA) plasmids, e.g., pO157 and pO103, that contribute to STEC clinical manifestations. Six ehxA subtypes (A through F) exist that phylogenetically cluster into eae-positive (B, C, F), a mix of eae-positive (E) and eae-negative (A), and a third, more distantly related, cluster of eae-negative (D) STEC strains. While subtype B, C, and F plasmids share a number of virulence traits that are distinct from those of subtype A, sequence data have not been available for subtype D and E plasmids. Here, we determined and compared the genetic composition of four subtype D and two subtype E plasmids to establish their evolutionary relatedness among ehxA subtypes and define their potential role in pathogenicity. We found that subtype D strains carry one exceptionally large plasmid (>200 kbp) that carries a variety of virulence genes that are associated with enterotoxigenic and enterohemorrhagic E. coli, which, quite possibly, enables these strains to cause disease despite being food isolates. Our data offer further support for the hypothesis that this subtype D plasmid represents a novel virulence plasmid, sharing very few genetic features with other plasmids; we conclude that these plasmids have evolved from a different evolutionary lineage than the plasmids carrying the other ehxA subtypes. In contrast, the 50-kbp plasmids of subtype E (pO145), although isolated from HUS outbreak strains, carried only few virulence-associated determinants, suggesting that the clinical presentation of subtype E strains is largely a result of chromosomally encoded virulence factors.Bacterial plasmids are known to be key agents of change in microbial populations, promoting the dissemination of various traits, such as drug resistance and virulence. This study determined the genetic makeup of virulence plasmids from rare enterohemolysin subtype D and E Shiga toxin-producing E. coli strains. We demonstrated that ehxA subtype D plasmids represent a novel E. coli virulence plasmid, and although subtype D plasmids were derived from nonclinical isolates, they encoded a variety of virulence determinants that are associated with pathogenic E. coli In contrast, subtype E plasmids, isolated from strains recovered from severely ill patients, carry only a few virulence determinants. The results of this study reemphasize the plasticity and vast diversity among E. coli plasmids. This work demonstrates that, although E. coli strains of certain serogroups may not be frequently associated with disease, they should not be underestimated in protecting human health and food safety. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense.

Mycobacterium avium complex (MAC) contains clinically important nontuberculous mycobacteria worldwide and is the second largest medical complex in the Mycobacterium genus after the Mycobacterium tuberculosis complex. MAC comprises several species that are closely phylogenetically related but diverse regarding their host preference, course of disease, virulence and immune response. In this study we provided immunologic and virulence-related insights into the M. colombiense genome as a model of an opportunistic pathogen in the MAC. By using bioinformatic tools we found that M. colombiense has deletions in the genes involved in p-HBA/PDIM/PGL, PLC, SL-1 and HspX production, and loss of the ESX-1 locus. This information not only sheds light on our understanding the virulence mechanisms used by opportunistic MAC pathogens but also has great potential for the designing of species-specific diagnostic tools.


July 7, 2019  |  

Complete genome sequence of Mycobacterium chimaera strain AH16.

Mycobacterium chimaera is a nontuberculous mycobacterial species that causes cardiovascular, pulmonary, and postsurgical infections. Here, we report the first complete genome sequence of M. chimaera This genome is 6.33 Mbp, with a G+C content of 67.56%, and encodes 4,926 protein-coding genes, as well as 74 tRNAs, one ncRNA, and three rRNA genes. Copyright © 2016 Hasan et al.


July 7, 2019  |  

Complete genome sequence of Pseudomonas sp. strain NC02, isolated from soil.

We report here the complete genome sequence of Pseudomonas sp. strain NC02, isolated from soil in eastern Massachusetts. We assembled PacBio reads into a single closed contig with 132× mean coverage and then polished this contig using Illumina MiSeq reads, yielding a 6,890,566-bp sequence with 61.1% GC content. Copyright © 2018 Cerra et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.