X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
April 13, 2017

Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C.

The ability of bacteria and fungi to communicate with each other is a remarkable aspect of the microbial world. It is recognized that volatile organic compounds (VOCs) act as communication signals, however the molecular responses by bacteria to fungal VOCs remain unknown. Here we perform transcriptomics and proteomics analyses of Serratia plymuthica PRI-2C exposed to VOCs emitted by the fungal pathogen Fusarium culmorum. We find that the bacterium responds to fungal VOCs with changes in gene and protein expression related to motility, signal transduction, energy metabolism, cell envelope biogenesis, and secondary metabolite production. Metabolomic analysis of the bacterium exposed to…

Read More »

April 6, 2017

Whole-genome sequences of Burkholderia pseudomallei isolates exhibiting decreased meropenem susceptibility.

We report here paired isogenic Burkholderia pseudomallei genomes obtained from three patients receiving intravenous meropenem for melioidosis treatment, with post-meropenem isolates developing decreased susceptibility. Two genomes were finished, and four were drafted to improved high-quality standard. These genomes will be used to identify meropenem resistance mechanisms in B. pseudomallei. Copyright © 2017 Price et al.

Read More »

February 28, 2017

Diversity and activity of alternative nitrogenases in sequenced genomes and coastal environments.

The nitrogenase enzyme, which catalyzes the reduction of N2 gas to NH4(+), occurs as three separate isozyme that use Mo, Fe-only, or V. The majority of global nitrogen fixation is attributed to the more efficient 'canonical' Mo-nitrogenase, whereas Fe-only and V-('alternative') nitrogenases are often considered 'backup' enzymes, used when Mo is limiting. Yet, the environmental distribution and diversity of alternative nitrogenases remains largely unknown. We searched for alternative nitrogenase genes in sequenced genomes and used PacBio sequencing to explore the diversity of canonical (nifD) and alternative (anfD and vnfD) nitrogenase amplicons in two coastal environments: the Florida Everglades and Sippewissett…

Read More »

November 23, 2016

Complete genome sequence of Mycobacterium chimaera strain AH16.

Mycobacterium chimaera is a nontuberculous mycobacterial species that causes cardiovascular, pulmonary, and postsurgical infections. Here, we report the first complete genome sequence of M. chimaera This genome is 6.33 Mbp, with a G+C content of 67.56%, and encodes 4,926 protein-coding genes, as well as 74 tRNAs, one ncRNA, and three rRNA genes. Copyright © 2016 Hasan et al.

Read More »

November 9, 2016

Short tandem repeats, segmental duplications, gene deletion, and genomic instability in a rapidly diversified immune gene family.

Genomic regions with repetitive sequences are considered unstable and prone to swift DNA diversification processes. A highly diverse immune gene family of the sea urchin (Strongylocentrotus purpuratus), called Sp185/333, is composed of clustered genes with similar sequence as well as several types of repeats ranging in size from short tandem repeats (STRs) to large segmental duplications. This repetitive structure may have been the basis for the incorrect assembly of this gene family in the sea urchin genome sequence. Consequently, we have resolved the structure of the family and profiled the members by sequencing selected BAC clones using Illumina and PacBio…

Read More »

November 1, 2016

Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense.

Mycobacterium avium complex (MAC) contains clinically important nontuberculous mycobacteria worldwide and is the second largest medical complex in the Mycobacterium genus after the Mycobacterium tuberculosis complex. MAC comprises several species that are closely phylogenetically related but diverse regarding their host preference, course of disease, virulence and immune response. In this study we provided immunologic and virulence-related insights into the M. colombiense genome as a model of an opportunistic pathogen in the MAC. By using bioinformatic tools we found that M. colombiense has deletions in the genes involved in p-HBA/PDIM/PGL, PLC, SL-1 and HspX production, and loss of the ESX-1 locus. This information…

Read More »

November 1, 2016

Plasmids from Shiga toxin-producing Escherichia coli strains with rare enterohemolysin gene (ehxA) subtypes reveal pathogenicity potential and display a novel evolutionary path.

Most Shiga toxin-producing Escherichia coli (STEC) strains associated with severe disease, such as hemolytic-uremic syndrome (HUS), carry large enterohemolysin-encoding (ehxA) plasmids, e.g., pO157 and pO103, that contribute to STEC clinical manifestations. Six ehxA subtypes (A through F) exist that phylogenetically cluster into eae-positive (B, C, F), a mix of eae-positive (E) and eae-negative (A), and a third, more distantly related, cluster of eae-negative (D) STEC strains. While subtype B, C, and F plasmids share a number of virulence traits that are distinct from those of subtype A, sequence data have not been available for subtype D and E plasmids. Here,…

Read More »

September 19, 2016

Genome-directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum.

Clostridium pasteurianum is emerging as a prospective host for the production of biofuels and chemicals, and has recently been shown to directly consume electric current. Despite this growing biotechnological appeal, the organism's genetics and central metabolism remain poorly understood. Here we present a concurrent genome sequence for the C. pasteurianum type strain and provide extensive genomic analysis of the organism's defence mechanisms and central fermentative metabolism. Next generation genome sequencing produced reads corresponding to spontaneous excision of a novel phage, designated f6013, which could be induced using mitomycin C and detected using PCR and transmission electron microscopy. Methylome analysis of…

Read More »

August 18, 2016

Genome sequences of Ralstonia insidiosa type strain ATCC 49129 and strain FC1138, a strong biofilm producer isolated from a fresh-cut produce-processing plant.

Ralstonia insidiosa is an opportunistic pathogen and a strong biofilm producer. Here, we present the complete genome sequences of R. insidiosa FC1138 and ATCC 49129. Both strains have two circular chromosomes of approximately 3.9 and 1.9 Mb and a 50-kb plasmid. ATCC 49129 also possesses a megaplasmid of approximately 318 kb. Copyright © 2016 Xu et al.

Read More »

August 11, 2016

Complete genome sequence of Serratia marcescens U36365, a green pigment–producing strain isolated from a patient with urinary tract infection.

Serratia marcescens is an emerging nosocomial pathogen associated with urinary and respiratory tract infections. In this study, we determined the genome of a green pigment-producing clinical strain, U36365, isolated from a hospital in Southern India. De novo assembly of PacBio long-read sequencing indicates that the U36365 genome consists of a chromosome of 5.12 Mbps and no plasmids. Copyright © 2016 Sahni et al.

Read More »

July 5, 2016

Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment.

Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism's physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota ('Nanopusillus acidilobi') and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of 'Nanopusillus' are among the smallest known cellular organisms (100-300?nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with…

Read More »

June 1, 2016

A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer.

Although human LINE-1 (L1) elements are actively mobilized in many cancers, a role for somatic L1 retrotransposition in tumor initiation has not been conclusively demonstrated. Here, we identify a novel somatic L1 insertion in the APC tumor suppressor gene that provided us with a unique opportunity to determine whether such insertions can actually initiate colorectal cancer (CRC), and if so, how this might occur. Our data support a model whereby a hot L1 source element on Chromosome 17 of the patient's genome evaded somatic repression in normal colon tissues and thereby initiated CRC by mutating the APC gene. This insertion…

Read More »

January 1, 2016

The microbiota of freshwater fish and freshwater niches contain omega-3 producing Shewanella species.

Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also…

Read More »

December 28, 2015

The genome and methylome of a beetle with complex social behavior, Nicrophorus vespilloides (Coleoptera: Silphidae).

Testing for conserved and novel mechanisms underlying phenotypic evolution requires a diversity of genomes available for comparison spanning multiple independent lineages. For example, complex social behavior in insects has been investigated primarily with eusocial lineages, nearly all of which are Hymenoptera. If conserved genomic influences on sociality do exist, we need data from a wider range of taxa that also vary in their levels of sociality. Here, we present the assembled and annotated genome of the subsocial beetle Nicrophorus vespilloides, a species long used to investigate evolutionary questions of complex social behavior. We used this genome to address two questions.…

Read More »

1 2 3 4 5

Subscribe for blog updates:

Archives