X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
January 1, 2019

Morphotypes of the common beadlet anemone Actinia equina (L.) are genetically distinct

Anemones of the genus Actinia are ecologically important and familiar organisms on many rocky shores. However, this genus is taxonomically problematical and prior evidence suggests that the North Atlantic beadlet anemone, Actinia equina, may actually consist of a number of cryptic species. Previous genetic work has been largely limited to allozyme electrophoresis and there remains a dearth of genetic resources with which to study this genus. Mitochondrial DNA sequencing may help to clarify the taxonomy of Actinia. Here, the complete mitochondrial genome of the beadlet anemone Actinia equina (Cnidaria: Anthozoa: Actinaria: Actiniidae) is shown to be 20,690?bp in length and…

Read More »

January 1, 2019

Adding function to the genome of African Salmonella Typhimurium ST313 strain D23580.

Salmonella Typhimurium sequence type (ST) 313 causes invasive nontyphoidal Salmonella (iNTS) disease in sub-Saharan Africa, targeting susceptible HIV+, malarial, or malnourished individuals. An in-depth genomic comparison between the ST313 isolate D23580 and the well-characterized ST19 isolate 4/74 that causes gastroenteritis across the globe revealed extensive synteny. To understand how the 856 nucleotide variations generated phenotypic differences, we devised a large-scale experimental approach that involved the global gene expression analysis of strains D23580 and 4/74 grown in 16 infection-relevant growth conditions. Comparison of transcriptional patterns identified virulence and metabolic genes that were differentially expressed between D23580 versus 4/74, many of which…

Read More »

November 1, 2018

Comparative genomics of Staphylococcus reveals determinants of speciation and diversification of antimicrobial defense.

The bacterial genus Staphylococcus comprises diverse species with most being described as colonizers of human and animal skin. A relational analysis of features that discriminate its species and contribute to niche adaptation and survival remains to be fully described. In this study, an interspecies, whole-genome comparative analysis of 21 Staphylococcus species was performed based on their orthologues. Three well-defined multi-species groups were identified: group A (including aureus/epidermidis); group B (including saprophyticus/xylosus) and group C (including pseudintermedius/delphini). The machine learning algorithm Random Forest was applied to prioritize orthologs that drive formation of the Staphylococcus species groups A-C. Orthologues driving staphylococcal intrageneric…

Read More »

October 1, 2018

The sequence of a male-specific genome region containing the sex determination switch in Aedes aegypti.

Aedes aegypti is the principal vector of several important arboviruses. Among the methods of vector control to limit transmission of disease are genetic strategies that involve the release of sterile or genetically modified non-biting males, which has generated interest in manipulating mosquito sex ratios. Sex determination in Ae. aegypti is controlled by a non-recombining Y chromosome-like region called the M locus, yet characterisation of this locus has been thwarted by the repetitive nature of the genome. In 2015, an M locus gene named Nix was identified that displays the qualities of a sex determination switch.With the use of a whole-genome…

Read More »

September 1, 2018

The structure of a conserved telomeric region associated with variant antigen loci in the blood parasite Trypanosoma congolense

African trypanosomiasis is a vector-borne disease of humans and livestock caused by African trypanosomes (Trypanosoma spp.). Survival in the vertebrate bloodstream depends on antigenic variation of Variant Surface Glycoproteins (VSGs) coating the parasite surface. In T. brucei, a model for antigenic variation, monoallelic VSG expression originates from dedicated VSG expression sites (VES). Trypanosoma brucei VES have a conserved structure consisting of a telomeric VSG locus downstream of unique, repeat sequences, and an independent promoter. Additional protein-coding sequences, known as "Expression Site Associated Genes (ESAGs)", are also often present and are implicated in diverse, bloodstream-stage functions. Trypanosoma congolense is a related…

Read More »

July 1, 2018

Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa.

Pseudomonas aeruginosa colonises the upper airway of cystic fibrosis (CF) patients, providing a reservoir of host-adapted genotypes that subsequently establish chronic lung infection. We previously experimentally-evolved P. aeruginosa in a murine model of respiratory tract infection and observed early-acquired mutations in pmrB, encoding the sensor kinase of a two-component system that promoted establishment and persistence of infection. Here, using proteomics, we show downregulation of proteins involved in LPS biosynthesis, antimicrobial resistance and phenazine production in pmrB mutants, and upregulation of proteins involved in adherence, lysozyme resistance and inhibition of the chloride ion channel CFTR, relative to wild-type strain LESB65. Accordingly,…

Read More »

June 1, 2018

Extensive exchange of transposable elements in the Drosophila pseudoobscura group.

As species diverge, so does their transposable element (TE) content. Within a genome, TE families may eventually become dormant due to host-silencing mechanisms, natural selection and the accumulation of inactive copies. The transmission of active copies from a TE families, both vertically and horizontally between species, can allow TEs to escape inactivation if it occurs often enough, as it may allow TEs to temporarily escape silencing in a new host. Thus, the contribution of horizontal exchange to TE persistence has been of increasing interest.Here, we annotated TEs in five species with sequenced genomes from the D. pseudoobscura species group, and…

Read More »

June 1, 2018

Comparative genomics of Campylobacter concisus: Analysis of clinical strains reveals genome diversity and pathogenic potential.

In recent years, an increasing number of Campylobacter species have been associated with human gastrointestinal (GI) diseases including gastroenteritis, inflammatory bowel disease, and colorectal cancer. Campylobacter concisus, an oral commensal historically linked to gingivitis and periodontitis, has been increasingly detected in the lower GI tract. In the present study, we generated robust genome sequence data from C. concisus strains and undertook a comprehensive pangenome assessment to identify C. concisus virulence properties and to explain potential adaptations acquired while residing in specific ecological niche(s) of the GI tract. Genomes of 53 new C. concisus strains were sequenced, assembled, and annotated including…

Read More »

February 1, 2018

Microbiome and infectivity studies reveal complex polyspecies tree disease in Acute Oak Decline.

Decline-diseases are complex and becoming increasingly problematic to tree health globally. Acute Oak Decline (AOD) is characterized by necrotic stem lesions and galleries of the bark-boring beetle, Agrilus biguttatus, and represents a serious threat to oak. Although multiple novel bacterial species and Agrilus galleries are associated with AOD lesions, the causative agent(s) are unknown. The AOD pathosystem therefore provides an ideal model for a systems-based research approach to address our hypothesis that AOD lesions are caused by a polymicrobial complex. Here we show that three bacterial species, Brenneria goodwinii, Gibbsiella quercinecans and Rahnella victoriana, are consistently abundant in the lesion…

Read More »

October 31, 2017

Public health surveillance in the UK revolutionises our understanding of the invasive Salmonella Typhimurium epidemic in Africa.

The ST313 sequence type of Salmonella Typhimurium causes invasive non-typhoidal salmonellosis and was thought to be confined to sub-Saharan Africa. Two distinct phylogenetic lineages of African ST313 have been identified.We analysed the whole genome sequences of S. Typhimurium isolates from UK patients that were generated following the introduction of routine whole-genome sequencing (WGS) of Salmonella enterica by Public Health England in 2014.We found that 2.7% (84/3147) of S. Typhimurium from patients in England and Wales were ST313 and were associated with gastrointestinal infection. Phylogenetic analysis revealed novel diversity of ST313 that distinguished UK-linked gastrointestinal isolates from African-associated extra-intestinal isolates. The…

Read More »

July 23, 2017

Large scale and significant expression from pseudogenes in Sodalis glossinidius – a facultative bacterial endosymbiont

The majority of bacterial genomes have high coding efficiencies, but there are some genomes of intracellular bacteria that have low gene density. The genome of the endosymbiont Sodalis glossinidius contains almost 50% pseudogenes containing mutations that putatively silence them at the genomic level. We have applied multiple omic strategies, combining: Illumina and Pacific Biosciences Single-Molecule Real Time DNA-sequencing and annotation; stranded RNA-sequencing; and proteome analysis to better understand the transcriptional and translational landscape of Sodalis pseudogenes, and potential mechanisms for their control. Between 53% and 74% of the Sodalis transcriptome remains active in cell-free culture. Mean sense transcription from Coding…

Read More »

July 1, 2017

SMRT Gate: A method for validation of synthetic constructs on Pacific Biosciences sequencing platforms.

Current DNA assembly methods are prone to sequence errors, requiring rigorous quality control (QC) to identify incorrect assemblies or synthesized constructs. Such errors can lead to misinterpretation of phenotypes. Because of this intrinsic problem, routine QC analysis is generally performed on three or more clones using a combination of restriction endonuclease assays, colony PCR, and Sanger sequencing. However, as new automation methods emerge that enable high-throughput assembly, QC using these techniques has become a major bottleneck. Here, we describe a quick and affordable methodology for the QC of synthetic constructs. Our method involves a one-pot digestion-ligation DNA assembly reaction, based…

Read More »

April 13, 2017

Whole-genome sequence of Staphylococcus hominis strain J31 isolated from healthy human skin.

We report here the first whole-genome sequence of a skin-associated strain of Staphylococcus hominis determined using the PacBio long-read sequencing platform. S. hominis is a major commensal of the skin microflora. This genome sequence adds to our understanding of this species and will aid studies of gene traffic between staphylococci. Copyright © 2017 Coates-Brown and Horsburgh.

Read More »

December 13, 2016

Use of single molecule sequencing for comparative genomics of an environmental and a clinical isolate of Clostridium difficile ribotype 078.

How the pathogen Clostridium difficile might survive, evolve and be transferred between reservoirs within the natural environment is poorly understood. Some ribotypes are found both in clinical and environmental settings. Whether these strains are distinct from each another and evolve in the specific environments is not established. The possession of a highly mobile genome has contributed to the genetic diversity and ongoing evolution of C. difficile. Interpretations of genetic diversity have been limited by fragmented assemblies resulting from short-read length sequencing approaches and by a limited understanding of epigenetic regulation of diversity. To address this, single molecule real time (SMRT) sequencing…

Read More »

1 2

Subscribe for blog updates:

Archives