July 19, 2019  |  

Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates.

We report the discovery and confirmation of 23 novel mutations with previously undocumented role in isoniazid (INH) drug resistance, in catalase-peroxidase (katG) gene of Mycobacterium tuberculosis (Mtb) isolates. With these mutations, a synonymous mutation in fabG1 (g609a), and two canonical mutations, we were able to explain 98% of the phenotypic resistance observed in 366 clinical Mtb isolates collected from four high tuberculosis (TB)-burden countries: India, Moldova, Philippines, and South Africa. We conducted overlapping targeted and whole-genome sequencing for variant discovery in all clinical isolates with a variety of INH-resistant phenotypes. Our analysis showed that just two canonical mutations (katG 315AGC-ACC and inhA promoter-15C-T) identified 89.5% of resistance phenotypes in our collection. Inclusion of the 23 novel mutations reported here, and the previously documented point mutation in fabG1, increased the sensitivity of these mutations as markers of INH resistance to 98%. Only six (2%) of the 332 resistant isolates in our collection did not harbor one or more of these mutations. The third most prevalent substitution, at inhA promoter position -8, present in 39 resistant isolates, was of no diagnostic significance since it always co-occurred with katG 315. 79% of our isolates harboring novel mutations belong to genetic group 1 indicating a higher tendency for this group to go down an uncommon evolutionary path and evade molecular diagnostics. The results of this study contribute to our understanding of the mechanisms of INH resistance in Mtb isolates that lack the canonical mutations and could improve the sensitivity of next generation molecular diagnostics.


July 19, 2019  |  

Precision methylome characterization of Mycobacterium tuberculosis complex (MTBC) using PacBio single-molecule real-time (SMRT) technology.

Tuberculosis (TB) remains one of the most common infectious diseases caused by Mycobacterium tuberculosis complex (MTBC). To panoramically analyze MTBC’s genomic methylation, we completed the genomes of 12 MTBC strains (Mycobacterium bovis; M. bovis BCG; M. microti; M. africanum; M. tuberculosis H37Rv; H37Ra; and 6 M. tuberculosis clinical isolates) belonging to different lineages and characterized their methylomes using single-molecule real-time (SMRT) technology. We identified three (m6)A sequence motifs and their corresponding methyltransferase (MTase) genes, including the reported mamA, hsdM and a newly discovered mamB. We also experimentally verified the methylated motifs and functions of HsdM and MamB. Our analysis indicated the MTase activities varied between 12 strains due to mutations/deletions. Furthermore, through measuring ‘the methylated-motif-site ratio’ and ‘the methylated-read ratio’, we explored the methylation status of each modified site and sequence-read to obtain the ‘precision methylome’ of the MTBC strains, which enabled intricate analysis of MTase activity at whole-genome scale. Most unmodified sites overlapped with transcription-factor binding-regions, which might protect these sites from methylation. Overall, our findings show enormous potential for the SMRT platform to investigate the precise character of methylome, and significantly enhance our understanding of the function of DNA MTase.© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.


July 19, 2019  |  

SMRT genome assembly corrects reference errors, resolving the genetic basis of virulence in Mycobacterium tuberculosis.

The genetic basis of virulence in Mycobacterium tuberculosis has been investigated through genome comparisons of virulent (H37Rv) and attenuated (H37Ra) sister strains. Such analysis, however, relies heavily on the accuracy of the sequences. While the H37Rv reference genome has had several corrections to date, that of H37Ra is unmodified since its original publication.Here, we report the assembly and finishing of the H37Ra genome from single-molecule, real-time (SMRT) sequencing. Our assembly reveals that the number of H37Ra-specific variants is less than half of what the Sanger-based H37Ra reference sequence indicates, undermining and, in some cases, invalidating the conclusions of several studies. PE_PPE family genes, which are intractable to commonly-used sequencing platforms because of their repetitive and GC-rich nature, are overrepresented in the set of genes in which all reported H37Ra-specific variants are contradicted. Further, one of the sequencing errors in H37Ra masks a true variant in common with the clinical strain CDC1551 which, when considered in the context of previous work, corresponds to a sequencing error in the H37Rv reference genome.Our results constrain the set of genomic differences possibly affecting virulence by more than half, which focuses laboratory investigation on pertinent targets and demonstrates the power of SMRT sequencing for producing high-quality reference genomes.


July 19, 2019  |  

Methylation in Mycobacterium tuberculosis is lineage specific with associated mutations present globally.

DNA methylation is an epigenetic modification of the genome involved in regulating crucial cellular processes, including transcription and chromosome stability. Advances in PacBio sequencing technologies can be used to robustly reveal methylation sites. The methylome of the Mycobacterium tuberculosis complex is poorly understood but may be involved in virulence, hypoxic survival and the emergence of drug resistance. In the most extensive study to date, we characterise the methylome across the 4 major lineages of M. tuberculosis and 2 lineages of M. africanum, the leading causes of tuberculosis disease in humans. We reveal lineage-specific methylated motifs and strain-specific mutations that are abundant globally and likely to explain loss of function in the respective methyltransferases. Our work provides a set of sixteen new complete reference genomes for the Mycobacterium tuberculosis complex, including complete lineage 5 genomes. Insights into lineage-specific methylomes will further elucidate underlying biological mechanisms and other important phenotypes of the epi-genome.


July 7, 2019  |  

Prognostic significance of novel katG mutations in Mycobacterium tuberculosis

By using whole genome sequencing (WGS), researchers are beginning to understand the genetic diversity of Mycobacterium tuberculosis (MTB) and its consequences for the diagnosis of multidrug-resistant tuberculosis (MDR–TB) on a genomic scale. The Global Consortium for Drug-resistant TB Diagnostics (GCDD) conducted a genome scale variant analyses of 366 clinical MTB genomes (mostly MDR/XDR [extensively drug resistant]) from four countries in order to inform the development of rapid molecular diagnostics. This project has been extended by performing an evolutionary analysis of isoniazid (INH)-resistant isolates for prognostic purposes.


July 7, 2019  |  

Whole-genome sequences of Mycobacterium tuberculosis TB282 and TB284, a widespread and a unique strain, respectively, identified in a previous study of tuberculosis transmission in central Los Angeles, California, USA.

We report here the genome sequences of two Mycobacterium tuberculosis clinical isolates previously identified in central Los Angeles, CA, in the 1990s using a PacBio platform. Isolate TB282 represents a large-cluster strain that caused 27% of the tuberculosis cases, while TB284 represents a strain that caused disease in only one patient. Copyright © 2017 Zhang and Yang.


July 7, 2019  |  

Complete genome sequences of three representative Mycobacterium tuberculosis Beijing family strains belonging to distinct genotype clusters in Hanoi, Vietnam, during 2007 to 2009.

We present here three complete genome sequences of Mycobacterium tuberculosis Beijing family strains isolated in Hanoi, Vietnam. These three strains were selected from major genotypic clusters (15-MIRU-VNTR) identified in a previous population-based study. We emphasize their importance and potential as reference strains in this Asian region. Copyright © 2017 Wada et al.


July 7, 2019  |  

Comparative genomic analysis of Mycobacterium tuberculosis Beijing-like strains revealed specific genetic variations associated with virulence and drug resistance.

Isolates of the Mycobacterium tuberculosis lineage 2/East-Asian are considered one of the most successful strains due to their increased pathogenicity, hyper-virulence associated with drug resistance, and high transmission. Recent studies in Colombia have shown that the Beijing-like genotype is associated with multidrug-resistance and high prevalence in the southwest of the country, but the genetic basis of its success in dissemination is unknown. In contribution to this matter, we obtained the whole sequences of six genomes of clinical isolates assigned to the Beijing-like genotype. The genomes were compared with the reference genome of M. tuberculosis H37Rv and 53 previously published M. tuberculosis genomes. We found that the six Beijing-like isolates belong to a modern Beijing sub-lineage and share specific genomic variants: i.e. deletion in the PPE8 gene, in Rv3806c (ubiA) responsible of high ethambutol resistance and in Rv3862c (whiB6) which is involved in granuloma formation and virulence, are some of them. Moreover, each isolated has exclusively single nucleotide polymorphisms (SNPs) in genes related with cell wall processes and cell metabolism. We identified polymorphisms in genes related to drug resistance that could explain the drug-resistant phenotypes found in the six isolates from Colombia. We hypothesize that changes due to these genetic variations contribute to the success of these strains. Finally, we analyzed the IS6110 insertion sequences finding very low variance between them, suggesting that SNPs is the major cause of variability found in Beijing-like strains circulating in Colombia. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents.

Tuberculosis remains one of the world’s deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6-8) from the respective mutants. Most impressively, ilamycins E1/E2, which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ˜9.8?nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads.Tuberculosis (TB) remains one of the world’s deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.


July 7, 2019  |  

Comparative genomic analysis of two clonally related multidrug resistant Mycobacterium tuberculosis by Single Molecule Real Time Sequencing.

Background: Multidrug-resistant tuberculosis (MDR-TB) is posing a major threat to global TB control. In this study, we focused on two consecutive MDR-TB isolated from the same patient before and after the initiation of anti-TB treatment. To better understand the genomic characteristics of MDR-TB, Single Molecule Real-Time (SMRT) Sequencing and comparative genomic analyses was performed to identify mutations that contributed to the stepwise development of drug resistance and growth fitness in MDR-TB underin vivochallenge of anti-TB drugs.Result:Both pre-treatment and post-treatment strain demonstrated concordant phenotypic and genotypic susceptibility profiles toward rifampicin, pyrazinamide, streptomycin, fluoroquinolones, aminoglycosides, cycloserine, ethionamide, and para-aminosalicylic acid. However, although both strains carried identical missense mutations atrpoBS531L,inhAC-15T, andembBM306V, MYCOTB Sensititre assay showed that the post-treatment strain had 16-, 8-, and 4-fold elevation in the minimum inhibitory concentrations (MICs) toward rifabutin, isoniazid, and ethambutol respectively. The results have indicated the presence of additional resistant-related mutations governing the stepwise development of MDR-TB. Further comparative genomic analyses have identified three additional polymorphisms between the clinical isolates. These include a single nucleotide deletion at nucleotide position 360 ofrv0888in pre-treatment strain, and a missense mutation atrv3303c(lpdA)V44I and a 6-bp inframe deletion at codon 67-68 inrv2071c(cobM)in the post-treatment strain. Multiple sequence alignment showed that these mutations were occurring at highly conserved regions among pathogenic mycobacteria. Using structural-based and sequence-based algorithms, we further predicted that the mutations potentially have deleterious effect on protein function.Conclusion:This is the first study that compared the full genomes of two clonally-related MDR-TB clinical isolates during the course of anti-TB treatment. Our work has demonstrated the robustness of SMRT Sequencing in identifying mutations among MDR-TB clinical isolates. Comparative genome analysis also suggested novel mutations atrv0888, lpdA, andcobMthat might explain the difference in antibiotic resistance and growth pattern between the two MDR-TB strains.


July 7, 2019  |  

Comparative whole-genomic analysis of an ancient L2 lineage Mycobacterium novel phylogenetic clade and common genetic determinants of hypervirulent strains.

Background: Development of improved therapeutics against tuberculosis (TB) is hindered by an inadequate understanding of the relationship between disease severity and genetic diversity of its causative agent, Mycobacterium tuberculosis. We previously isolated a hypervirulent M. tuberculosis strain H112 from an HIV-negative patient with an aggressive disease progression from pulmonary TB to tuberculous meningitis—the most severe manifestation of tuberculosis. Human macrophage challenge experiment demonstrated that the strain H112 exhibited significantly better intracellular survivability and induced lower level of TNF-a than the reference virulent strain H37Rv and other 123 clinical isolates. Aim: The present study aimed to identify the potential genetic determinants of mycobacterial virulence that were common to strain H112 and hypervirulent M. tuberculosis strains of the same phylogenetic clade isolated in other global regions. Methods: A low-virulent M. tuberculosis strain H54 which belonged to the same phylogenetic lineage (L2) as strain H112 was selected from a collection of 115 clinical isolates. Both H112 and H54 were whole-genome-sequenced using PacBio sequencing technology. A comparative genomics approach was adopted to identify mutations present in strain H112 but absent in strain H54. Subsequently, an extensive phylogenetic analysis was conducted by including all publically available M. tuberculosis genomes. Single-nucleotide-polymorphisms (SNPs) and structural variations (SVs) common to hypervirulent strains in the global collection of genomes were considered as potential genetic determinants of hypervirulence. Results: Sequencing data revealed that both H112 and H54 were identified as members of the same sub-lineage L2.2.1. After excluding the lineage-related mutations shared between H112 and H54, we analyzed the phylogenetic relatedness of H112 with global collection of M. tuberculosis genomes (n = 4,338), and identified a novel phylogenetic clade in which four hypervirulent strains isolated from geographically diverse regions were clustered together. All hypervirulent strains in the clade shared 12 SNPs and 5 SVs with H112, including those affecting key virulence-associated loci, notably, a deleterious SNP (rv0178 p. D150E) within mce1 operon and an intergenic deletion (854259_ 854261delCC) in close-proximity to phoP. Conclusion: The present study identified common genetic factors in a novel phylogenetic clade of hypervirulent M. tuberculosis. The causative role of these mutations in mycobacterial virulence should be validated in future study.


July 7, 2019  |  

Whole genome sequencing of Mycobacterium tuberculosis SB24 isolated from Sabah, Malaysia.

Mycobacterium tuberculosis (M. tuberculosis) is the causative agent of tuberculosis (TB) that causes millions of death every year. We have sequenced the genome of M. tuberculosis isolated from cerebrospinal fluid (CSF) of a patient diagnosed with tuberculous meningitis (TBM). The isolated strain was referred as M. tuberculosis SB24. Genomic DNA of the M. tuberculosis SB24 was extracted and subjected to whole genome sequencing using PacBio platform. The draft genome size of M. tuberculosis SB24 was determined to be 4,452,489 bp with a G + C content of 65.6%. The whole genome shotgun project has been deposited in NCBI SRA under the accession number SRP076503.


July 7, 2019  |  

Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria.

Horizontal gene transfer (HGT) is a major driving force of bacterial diversification and evolution. For tuberculosis-causing mycobacteria, the impact of HGT in the emergence and distribution of dominant lineages remains a matter of debate. Here, by using fluorescence-assisted mating assays and whole genome sequencing, we present unique experimental evidence of chromosomal DNA transfer between tubercle bacilli of the early-branching Mycobacterium canettii clade. We found that the obtained recombinants had received multiple donor-derived DNA fragments in the size range of 100 bp to 118 kbp, fragments large enough to contain whole operons. Although the transfer frequency between M. canettii strains was low and no transfer could be observed among classical Mycobacterium tuberculosis complex (MTBC) strains, our study provides the proof of concept for genetic exchange in tubercle bacilli. This outstanding, now experimentally validated phenomenon presumably played a key role in the early evolution of the MTBC toward pathogenicity. Moreover, our findings also provide important information for the risk evaluation of potential transfer of drug resistance and fitness mutations among clinically relevant mycobacterial strains.


July 7, 2019  |  

Pathogenesis of multi drug-resistant and extensively drug-resistant tuberculosis as a determinant of future treatment success.

Multidrug-resistant (MDR)/extensively drug-resistant (XDR) tuberculosis (TB) is a significant threat to global TB control [1]. In most cases, treatment of MDR/XDR TB is not standardized, and clinicians have adopted a variety of treatment strategies. These strategies include switching to a regimen of new drugs, increasing the dosage of the same drugs, rarely used drugs (which have widespread resistance), etc. Drug resistance is a manmade phenomenon that is driven by treatment strategy (i.e., regimen). These divergent approaches may differentially drive the evolution of bacteria. Some instances of this evolution have already occurred [2]. The community’s focus has been on drug resistance; therefore, the consequence of this divergence is usually by different mechanisms of resistance [2] and [3]. However, the full scope of the consequential microevolution frequently goes unnoticed because it also affects important factors such as fitness and virulence. In this study, we aimed to develop a comprehensive understanding of the consequences of differential TB treatment to build more accurate prognostics for future treatments.


July 7, 2019  |  

Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense.

Mycobacterium avium complex (MAC) contains clinically important nontuberculous mycobacteria worldwide and is the second largest medical complex in the Mycobacterium genus after the Mycobacterium tuberculosis complex. MAC comprises several species that are closely phylogenetically related but diverse regarding their host preference, course of disease, virulence and immune response. In this study we provided immunologic and virulence-related insights into the M. colombiense genome as a model of an opportunistic pathogen in the MAC. By using bioinformatic tools we found that M. colombiense has deletions in the genes involved in p-HBA/PDIM/PGL, PLC, SL-1 and HspX production, and loss of the ESX-1 locus. This information not only sheds light on our understanding the virulence mechanisms used by opportunistic MAC pathogens but also has great potential for the designing of species-specific diagnostic tools.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.