We report the discovery and confirmation of 23 novel mutations with previously undocumented role in isoniazid (INH) drug resistance, in catalase-peroxidase (katG) gene of Mycobacterium tuberculosis (Mtb) isolates. With these mutations, a synonymous mutation in fabG1 (g609a), and two canonical mutations, we were able to explain 98% of the phenotypic resistance observed in 366 clinical Mtb isolates collected from four high tuberculosis (TB)-burden countries: India, Moldova, Philippines, and South Africa. We conducted overlapping targeted and whole-genome sequencing for variant discovery in all clinical isolates with a variety of INH-resistant phenotypes. Our analysis showed that just two canonical mutations (katG 315AGC-ACC…
Tuberculosis (TB) remains one of the most common infectious diseases caused by Mycobacterium tuberculosis complex (MTBC). To panoramically analyze MTBC’s genomic methylation, we completed the genomes of 12 MTBC strains (Mycobacterium bovis; M. bovis BCG; M. microti; M. africanum; M. tuberculosis H37Rv; H37Ra; and 6 M. tuberculosis clinical isolates) belonging to different lineages and characterized their methylomes using single-molecule real-time (SMRT) technology. We identified three (m6)A sequence motifs and their corresponding methyltransferase (MTase) genes, including the reported mamA, hsdM and a newly discovered mamB. We also experimentally verified the methylated motifs and functions of HsdM and MamB. Our analysis indicated…
The genetic basis of virulence in Mycobacterium tuberculosis has been investigated through genome comparisons of virulent (H37Rv) and attenuated (H37Ra) sister strains. Such analysis, however, relies heavily on the accuracy of the sequences. While the H37Rv reference genome has had several corrections to date, that of H37Ra is unmodified since its original publication.Here, we report the assembly and finishing of the H37Ra genome from single-molecule, real-time (SMRT) sequencing. Our assembly reveals that the number of H37Ra-specific variants is less than half of what the Sanger-based H37Ra reference sequence indicates, undermining and, in some cases, invalidating the conclusions of several studies.…
DNA methylation is an epigenetic modification of the genome involved in regulating crucial cellular processes, including transcription and chromosome stability. Advances in PacBio sequencing technologies can be used to robustly reveal methylation sites. The methylome of the Mycobacterium tuberculosis complex is poorly understood but may be involved in virulence, hypoxic survival and the emergence of drug resistance. In the most extensive study to date, we characterise the methylome across the 4 major lineages of M. tuberculosis and 2 lineages of M. africanum, the leading causes of tuberculosis disease in humans. We reveal lineage-specific methylated motifs and strain-specific mutations that are…
By using whole genome sequencing (WGS), researchers are beginning to understand the genetic diversity of Mycobacterium tuberculosis (MTB) and its consequences for the diagnosis of multidrug-resistant tuberculosis (MDR–TB) on a genomic scale. The Global Consortium for Drug-resistant TB Diagnostics (GCDD) conducted a genome scale variant analyses of 366 clinical MTB genomes (mostly MDR/XDR [extensively drug resistant]) from four countries in order to inform the development of rapid molecular diagnostics. This project has been extended by performing an evolutionary analysis of isoniazid (INH)-resistant isolates for prognostic purposes.
We report here the genome sequences of two Mycobacterium tuberculosis clinical isolates previously identified in central Los Angeles, CA, in the 1990s using a PacBio platform. Isolate TB282 represents a large-cluster strain that caused 27% of the tuberculosis cases, while TB284 represents a strain that caused disease in only one patient. Copyright © 2017 Zhang and Yang.
We present here three complete genome sequences of Mycobacterium tuberculosis Beijing family strains isolated in Hanoi, Vietnam. These three strains were selected from major genotypic clusters (15-MIRU-VNTR) identified in a previous population-based study. We emphasize their importance and potential as reference strains in this Asian region. Copyright © 2017 Wada et al.
Isolates of the Mycobacterium tuberculosis lineage 2/East-Asian are considered one of the most successful strains due to their increased pathogenicity, hyper-virulence associated with drug resistance, and high transmission. Recent studies in Colombia have shown that the Beijing-like genotype is associated with multidrug-resistance and high prevalence in the southwest of the country, but the genetic basis of its success in dissemination is unknown. In contribution to this matter, we obtained the whole sequences of six genomes of clinical isolates assigned to the Beijing-like genotype. The genomes were compared with the reference genome of M. tuberculosis H37Rv and 53 previously published M.…
Tuberculosis remains one of the world’s deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three…
Background: Multidrug-resistant tuberculosis (MDR-TB) is posing a major threat to global TB control. In this study, we focused on two consecutive MDR-TB isolated from the same patient before and after the initiation of anti-TB treatment. To better understand the genomic characteristics of MDR-TB, Single Molecule Real-Time (SMRT) Sequencing and comparative genomic analyses was performed to identify mutations that contributed to the stepwise development of drug resistance and growth fitness in MDR-TB underin vivochallenge of anti-TB drugs.Result:Both pre-treatment and post-treatment strain demonstrated concordant phenotypic and genotypic susceptibility profiles toward rifampicin, pyrazinamide, streptomycin, fluoroquinolones, aminoglycosides, cycloserine, ethionamide, and para-aminosalicylic acid. However, although…
Background: Development of improved therapeutics against tuberculosis (TB) is hindered by an inadequate understanding of the relationship between disease severity and genetic diversity of its causative agent, Mycobacterium tuberculosis. We previously isolated a hypervirulent M. tuberculosis strain H112 from an HIV-negative patient with an aggressive disease progression from pulmonary TB to tuberculous meningitis—the most severe manifestation of tuberculosis. Human macrophage challenge experiment demonstrated that the strain H112 exhibited significantly better intracellular survivability and induced lower level of TNF-a than the reference virulent strain H37Rv and other 123 clinical isolates. Aim: The present study aimed to identify the potential genetic determinants…
Mycobacterium tuberculosis (M. tuberculosis) is the causative agent of tuberculosis (TB) that causes millions of death every year. We have sequenced the genome of M. tuberculosis isolated from cerebrospinal fluid (CSF) of a patient diagnosed with tuberculous meningitis (TBM). The isolated strain was referred as M. tuberculosis SB24. Genomic DNA of the M. tuberculosis SB24 was extracted and subjected to whole genome sequencing using PacBio platform. The draft genome size of M. tuberculosis SB24 was determined to be 4,452,489 bp with a G + C content of 65.6%. The whole genome shotgun project has been deposited in NCBI SRA under the accession number…
Horizontal gene transfer (HGT) is a major driving force of bacterial diversification and evolution. For tuberculosis-causing mycobacteria, the impact of HGT in the emergence and distribution of dominant lineages remains a matter of debate. Here, by using fluorescence-assisted mating assays and whole genome sequencing, we present unique experimental evidence of chromosomal DNA transfer between tubercle bacilli of the early-branching Mycobacterium canettii clade. We found that the obtained recombinants had received multiple donor-derived DNA fragments in the size range of 100 bp to 118 kbp, fragments large enough to contain whole operons. Although the transfer frequency between M. canettii strains was…
Multidrug-resistant (MDR)/extensively drug-resistant (XDR) tuberculosis (TB) is a significant threat to global TB control [1]. In most cases, treatment of MDR/XDR TB is not standardized, and clinicians have adopted a variety of treatment strategies. These strategies include switching to a regimen of new drugs, increasing the dosage of the same drugs, rarely used drugs (which have widespread resistance), etc. Drug resistance is a manmade phenomenon that is driven by treatment strategy (i.e., regimen). These divergent approaches may differentially drive the evolution of bacteria. Some instances of this evolution have already occurred [2]. The community’s focus has been on drug resistance;…
Mycobacterium avium complex (MAC) contains clinically important nontuberculous mycobacteria worldwide and is the second largest medical complex in the Mycobacterium genus after the Mycobacterium tuberculosis complex. MAC comprises several species that are closely phylogenetically related but diverse regarding their host preference, course of disease, virulence and immune response. In this study we provided immunologic and virulence-related insights into the M. colombiense genome as a model of an opportunistic pathogen in the MAC. By using bioinformatic tools we found that M. colombiense has deletions in the genes involved in p-HBA/PDIM/PGL, PLC, SL-1 and HspX production, and loss of the ESX-1 locus. This information…