X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
August 1, 2018

Genome-wide SNP and InDel mutations in Mycobacterium tuberculosis associated with rifampicin and isoniazid resistance

Objective: Multiple resistances to isoniazid and rifampicin lead to the majority of death associated with M. tuberculosis infection. This study aimed to characterize the single nucleotide polymorphisms (SNPs) and insertion and deletion (InDel) mutations associated with isoniazid and rifampicin resistance. Methods: The M. tuberculosis strain H37Rv was cultured and treated with isoniazid or rifampicin for generations. Total DNA samples from different generations were extracted for construction of DNA library, and the SNP and InDel mutation in different samples were detected by whole genome sequencing. Bioinformatics analysis such as phylogenetic tree and heap map were also performed. Results: Totally 58 nonsynonymous…

Read More »

July 1, 2018

MIRU-profiler: a rapid tool for determination of 24-loci MIRU-VNTR profiles from assembled genomes of Mycobacterium tuberculosis.

Tuberculosis (TB) resulted in an estimated 1.7 million deaths in the year 2016. The disease is caused by the members of Mycobacterium tuberculosis complex, which includes Mycobacterium tuberculosis, Mycobacterium bovis and other closely related TB causing organisms. In order to understand the epidemiological dynamics of TB, national TB control programs often conduct standardized genotyping at 24 Mycobacterial-Interspersed-Repetitive-Units (MIRU)-Variable-Number-of-Tandem-Repeats (VNTR) loci. With the advent of next generation sequencing technology, whole-genome sequencing (WGS) has been widely used for studying TB transmission. However, an open-source software that can connect WGS and MIRU-VNTR typing is currently unavailable, which hinders interlaboratory communication. In this manuscript,…

Read More »

February 1, 2018

Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.

Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio's single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT…

Read More »

January 9, 2018

Methylation in Mycobacterium tuberculosis is lineage specific with associated mutations present globally.

DNA methylation is an epigenetic modification of the genome involved in regulating crucial cellular processes, including transcription and chromosome stability. Advances in PacBio sequencing technologies can be used to robustly reveal methylation sites. The methylome of the Mycobacterium tuberculosis complex is poorly understood but may be involved in virulence, hypoxic survival and the emergence of drug resistance. In the most extensive study to date, we characterise the methylome across the 4 major lineages of M. tuberculosis and 2 lineages of M. africanum, the leading causes of tuberculosis disease in humans. We reveal lineage-specific methylated motifs and strain-specific mutations that are…

Read More »

November 15, 2017

Comparative genomic analysis of two clonally related multidrug resistant Mycobacterium tuberculosis by Single Molecule Real Time Sequencing.

Background: Multidrug-resistant tuberculosis (MDR-TB) is posing a major threat to global TB control. In this study, we focused on two consecutive MDR-TB isolated from the same patient before and after the initiation of anti-TB treatment. To better understand the genomic characteristics of MDR-TB, Single Molecule Real-Time (SMRT) Sequencing and comparative genomic analyses was performed to identify mutations that contributed to the stepwise development of drug resistance and growth fitness in MDR-TB underin vivochallenge of anti-TB drugs.Result:Both pre-treatment and post-treatment strain demonstrated concordant phenotypic and genotypic susceptibility profiles toward rifampicin, pyrazinamide, streptomycin, fluoroquinolones, aminoglycosides, cycloserine, ethionamide, and para-aminosalicylic acid. However, although…

Read More »

August 30, 2017

Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents.

Tuberculosis remains one of the world's deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three…

Read More »

July 20, 2017

Comparative genomic analysis of Mycobacterium tuberculosis Beijing-like strains revealed specific genetic variations associated with virulence and drug resistance.

Isolates of the Mycobacterium tuberculosis lineage 2/East-Asian are considered one of the most successful strains due to their increased pathogenicity, hyper-virulence associated with drug resistance, and high transmission. Recent studies in Colombia have shown that the Beijing-like genotype is associated with multidrug-resistance and high prevalence in the southwest of the country, but the genetic basis of its success in dissemination is unknown. In contribution to this matter, we obtained the whole sequences of six genomes of clinical isolates assigned to the Beijing-like genotype. The genomes were compared with the reference genome of M. tuberculosis H37Rv and 53 previously published M.…

Read More »

July 6, 2017

Complete genome sequences of three representative Mycobacterium tuberculosis Beijing family strains belonging to distinct genotype clusters in Hanoi, Vietnam, during 2007 to 2009.

We present here three complete genome sequences of Mycobacterium tuberculosis Beijing family strains isolated in Hanoi, Vietnam. These three strains were selected from major genotypic clusters (15-MIRU-VNTR) identified in a previous population-based study. We emphasize their importance and potential as reference strains in this Asian region. Copyright © 2017 Wada et al.

Read More »

July 1, 2017

Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing,…

Read More »

April 17, 2017

SMRT genome assembly corrects reference errors, resolving the genetic basis of virulence in Mycobacterium tuberculosis.

The genetic basis of virulence in Mycobacterium tuberculosis has been investigated through genome comparisons of virulent (H37Rv) and attenuated (H37Ra) sister strains. Such analysis, however, relies heavily on the accuracy of the sequences. While the H37Rv reference genome has had several corrections to date, that of H37Ra is unmodified since its original publication.Here, we report the assembly and finishing of the H37Ra genome from single-molecule, real-time (SMRT) sequencing. Our assembly reveals that the number of H37Ra-specific variants is less than half of what the Sanger-based H37Ra reference sequence indicates, undermining and, in some cases, invalidating the conclusions of several studies.…

Read More »

January 12, 2017

Whole-genome sequences of Mycobacterium tuberculosis TB282 and TB284, a widespread and a unique strain, respectively, identified in a previous study of tuberculosis transmission in central Los Angeles, California, USA.

We report here the genome sequences of two Mycobacterium tuberculosis clinical isolates previously identified in central Los Angeles, CA, in the 1990s using a PacBio platform. Isolate TB282 represents a large-cluster strain that caused 27% of the tuberculosis cases, while TB284 represents a strain that caused disease in only one patient. Copyright © 2017 Zhang and Yang.

Read More »

January 12, 2017

Comparative whole-genomic analysis of an ancient L2 lineage Mycobacterium novel phylogenetic clade and common genetic determinants of hypervirulent strains.

Background: Development of improved therapeutics against tuberculosis (TB) is hindered by an inadequate understanding of the relationship between disease severity and genetic diversity of its causative agent, Mycobacterium tuberculosis. We previously isolated a hypervirulent M. tuberculosis strain H112 from an HIV-negative patient with an aggressive disease progression from pulmonary TB to tuberculous meningitis—the most severe manifestation of tuberculosis. Human macrophage challenge experiment demonstrated that the strain H112 exhibited significantly better intracellular survivability and induced lower level of TNF-a than the reference virulent strain H37Rv and other 123 clinical isolates. Aim: The present study aimed to identify the potential genetic determinants…

Read More »

December 1, 2016

Pathogenesis of multi drug-resistant and extensively drug-resistant tuberculosis as a determinant of future treatment success.

Multidrug-resistant (MDR)/extensively drug-resistant (XDR) tuberculosis (TB) is a significant threat to global TB control [1]. In most cases, treatment of MDR/XDR TB is not standardized, and clinicians have adopted a variety of treatment strategies. These strategies include switching to a regimen of new drugs, increasing the dosage of the same drugs, rarely used drugs (which have widespread resistance), etc. Drug resistance is a manmade phenomenon that is driven by treatment strategy (i.e., regimen). These divergent approaches may differentially drive the evolution of bacteria. Some instances of this evolution have already occurred [2]. The community’s focus has been on drug resistance;…

Read More »

November 1, 2016

Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense.

Mycobacterium avium complex (MAC) contains clinically important nontuberculous mycobacteria worldwide and is the second largest medical complex in the Mycobacterium genus after the Mycobacterium tuberculosis complex. MAC comprises several species that are closely phylogenetically related but diverse regarding their host preference, course of disease, virulence and immune response. In this study we provided immunologic and virulence-related insights into the M. colombiense genome as a model of an opportunistic pathogen in the MAC. By using bioinformatic tools we found that M. colombiense has deletions in the genes involved in p-HBA/PDIM/PGL, PLC, SL-1 and HspX production, and loss of the ESX-1 locus. This information…

Read More »

September 1, 2016

Whole genome sequencing of Mycobacterium tuberculosis SB24 isolated from Sabah, Malaysia.

Mycobacterium tuberculosis (M. tuberculosis) is the causative agent of tuberculosis (TB) that causes millions of death every year. We have sequenced the genome of M. tuberculosis isolated from cerebrospinal fluid (CSF) of a patient diagnosed with tuberculous meningitis (TBM). The isolated strain was referred as M. tuberculosis SB24. Genomic DNA of the M. tuberculosis SB24 was extracted and subjected to whole genome sequencing using PacBio platform. The draft genome size of M. tuberculosis SB24 was determined to be 4,452,489 bp with a G + C content of 65.6%. The whole genome shotgun project has been deposited in NCBI SRA under the accession number…

Read More »

1 2

Subscribe for blog updates:

Archives