July 19, 2019  |  

Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi.

Although the genome of Trypanosoma cruzi, the causative agent of Chagas disease, was first made available in 2005, with additional strains reported later, the intrinsic genome complexity of this parasite (the abundance of repetitive sequences and genes organized in tandem) has traditionally hindered high-quality genome assembly and annotation. This also limits diverse types of analyses that require high degrees of precision. Long reads generated by third-generation sequencing technologies are particularly suitable to address the challenges associated with T. cruzi’s genome since they permit direct determination of the full sequence of large clusters of repetitive sequences without collapsing them. This, in turn, not only allows accurate estimation of gene copy numbers but also circumvents assembly fragmentation. Here, we present the analysis of the genome sequences of two T. cruzi clones: the hybrid TCC (TcVI) and the non-hybrid Dm28c (TcI), determined by PacBio Single Molecular Real-Time (SMRT) technology. The improved assemblies herein obtained permitted us to accurately estimate gene copy numbers, abundance and distribution of repetitive sequences (including satellites and retroelements). We found that the genome of T. cruzi is composed of a ‘core compartment’ and a ‘disruptive compartment’ which exhibit opposite GC content and gene composition. Novel tandem and dispersed repetitive sequences were identified, including some located inside coding sequences. Additionally, homologous chromosomes were separately assembled, allowing us to retrieve haplotypes as separate contigs instead of a unique mosaic sequence. Finally, manual annotation of surface multigene families, mucins and trans-sialidases allows now a better overview of these complex groups of genes.

July 19, 2019  |  

Genome organization and DNA accessibility control antigenic variation in trypanosomes.

Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses-Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing-that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.

July 7, 2019  |  

Trypanosoma cruzi specific mRNA amplification by in vitro transcription improves parasite transcriptomics in host-parasite RNA mixtures.

Trypanosomatids are a group of protozoan parasites that includes the etiologic agents of important human illnesses as Chagas disease, sleeping sickness and leishmaniasis. These parasites have a significant distinction from other eukaryotes concerning mRNA structure, since all mature mRNAs have an identical species-specific sequence of 39 nucleotides at the 5′ extremity, named spliced leader (SL). Considering this peculiar aspect of trypanosomatid mRNA, the aim of the present work was to develop a Trypanosoma cruzi specific in vitro transcription (IVT) linear mRNA amplification method in order to improve parasite transcriptomics analyses.We designed an oligonucleotide complementary to the last 21 bases of T. cruzi SL sequence, bearing an upstream T7 promoter (T7SL primer), which was used to direct the synthesis of second-strand cDNA. Original mRNA was then amplified by IVT using T7 RNA polymerase. T7SL-amplified RNA from two distinct T. cruzi stages (epimastigotes and trypomastigotes) were deep sequenced in SOLiD platform. Usual poly(A) + RNA and and T7-oligo(dT) amplified RNA (Eberwine method) were also sequenced. RNA-Seq reads were aligned to our new and improved T. cruzi Dm28c genome assembly (PacBio technology) and resulting transcriptome pattern from these three RNA preparation methods were compared, mainly concerning the conservation of mRNA transcritional levels and DEGs detection between epimastigotes and trypomastigotes.T7SL IVT method detected more potential differentially expressed genes in comparison to either poly(A) + RNA or T7dT IVT, and was also able to produce reliable quantifications of the parasite transcriptome down to 3 ng of total RNA. Furthermore, amplification of parasite mRNA in HeLa/epimastigote RNA mixtures showed that T7SL IVT generates transcriptome quantification with similar detection of differentially expressed genes when parasite RNA mass was only 0.1% of the total mixture (R = 0.78 when compared to poly(A) + RNA).The T7SL IVT amplification method presented here allows the detection of more potential parasite differentially expressed genes (in comparison to poly(A) + RNA) in host-parasite mixtures or samples with low amount of RNA. This method is especially useful for trypanosomatid transcriptomics because it produces less bias than PCR-based mRNA amplification. Additionally, by simply changing the complementary region of the T7SL primer, the present method can be applied to any trypanosomatid species.

July 7, 2019  |  

Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection.

Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving several morphologically and biochemically distinct stages that establish intricate interactions with various insect and mammalian hosts. It has also a heterogeneous population structure comprising strains with distinct properties such as virulence, sensitivity to drugs, antigenic profile and tissue tropism. We present a comparative transcriptome analysis of two cloned T. cruzi strains that display contrasting virulence phenotypes in animal models of infection: CL Brener is a virulent clone and CL-14 is a clone that is neither infective nor pathogenic in in vivo models of infection. Gene expression analysis of trypomastigotes and intracellular amastigotes harvested at 60 and 96 hours post-infection (hpi) of human fibroblasts revealed large differences that reflect the parasite’s adaptation to distinct environments during the infection of mammalian cells, including changes in energy sources, oxidative stress responses, cell cycle control and cell surface components. While extensive transcriptome remodeling was observed when trypomastigotes of both strains were compared to 60 hpi amastigotes, differences in gene expression were much less pronounced when 96 hpi amastigotes and trypomastigotes of CL Brener were compared. In contrast, the differentiation of the avirulent CL-14 from 96 hpi amastigotes to extracellular trypomastigotes was associated with considerable changes in gene expression, particularly in gene families encoding surface proteins such as trans-sialidases, mucins and the mucin associated surface proteins (MASPs). Thus, our comparative transcriptome analysis indicates that the avirulent phenotype of CL-14 may be due, at least in part, to a reduced or delayed expression of genes encoding surface proteins that are associated with the transition of amastigotes to trypomastigotes, an essential step in the establishment of the infection in the mammalian host. Confirming the role of members of the trans-sialidase family of surface proteins for parasite differentiation, transfected CL-14 constitutively expressing a trans-sialidase gene displayed faster kinetics of trypomastigote release in the supernatant of infected cells compared to wild type CL-14.

July 7, 2019  |  

De novo genome assembly shows genome wide similarity between Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense.

Trypanosoma brucei is a eukaryotic pathogen which causes African trypanosomiasis. It is notable for its variant surface glycoprotein (VSG) coat, which undergoes antigenic variation enabled by a large suite of VSG pseudogenes, allowing for persistent evasion of host adaptive immunity. While Trypanosoma brucei rhodesiense (Tbr) and T. b gambiense (Tbg) are human infective, related T. b. brucei (Tbb) is cleared by human sera. A single gene, the Serum Resistance Associated (SRA) gene, confers Tbr its human infectivity phenotype. Potential genetic recombination of this gene between Tbr and non-human infective Tbb strains has significant epidemiological consequences for Human African Trypanosomiasis outbreaks.Using long and short read whole genome sequencing, we generated a hybrid de novo assembly of a Tbr strain, producing 4,210 scaffolds totaling approximately 38.8 megabases, which comprise a significant proportion of the Tbr genome, and thus represents a valuable tool for a comparative genomics analyses among human and non-human infective T. brucei and future complete genome assembly. We detected 5,970 putative genes, of which two, an alcohol oxidoreductase and a pentatricopeptide repeat-containing protein, were members of gene families common to all T. brucei subspecies, but variants specific to the Tbr strain sequenced in this study. Our findings confirmed the extremely high level of genomic similarity between the two parasite subspecies found in other studies.We confirm at the whole genome level high similarity between the two Tbb and Tbr strains studied. The discovery of extremely minor genomic differentiation between Tbb and Tbr suggests that the transference of the SRA gene via genetic recombination could potentially result in novel human infective strains, thus all genetic backgrounds of T. brucei should be considered potentially human infective in regions where Tbr is prevalent.

July 7, 2019  |  

Genome sequence of Trypanosoma cruzi strain Bug2148.

Trypanosoma cruzi belongs to the group of mitochondrion-containing eukaryotes and has a highly plastic genome, unusual gene organization, and complex mechanisms for gene expression (polycistronic transcription). We report here the genome sequence of strain Bug2148, the first genomic sequence belonging to cluster TcV, which has been related to vertical transmission. Copyright © 2018 Callejas-Hernández et al.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.