July 7, 2019  |  

The dynamics of SecM-induced translational stalling.

SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP) using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation. opyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Sequence-dependent elongation dynamics on macrolide-bound ribosomes.

The traditional view of macrolide antibiotics as plugs inside the ribosomal nascent peptide exit tunnel (NPET) has lately been challenged in favor of a more complex, heterogeneous mechanism, where drug-peptide interactions determine the fate of a translating ribosome. To investigate these highly dynamic processes, we applied single-molecule tracking of elongating ribosomes during inhibition of elongation by erythromycin of several nascent chains, including ErmCL and H-NS, which were shown to be, respectively, sensitive and resistant to erythromycin. Peptide sequence-specific changes were observed in translation elongation dynamics in the presence of a macrolide-obstructed NPET. Elongation rates were not severely inhibited in general by the presence of the drug; instead, stalls or pauses were observed as abrupt events. The dynamic pathways of nascent-chain-dependent elongation pausing in the presence of macrolides determine the fate of the translating ribosome stalling or readthrough. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

The impact of aminoglycosides on the dynamics of translation elongation.

Inferring antibiotic mechanisms on translation through static structures has been challenging, as biological systems are highly dynamic. Dynamic single-molecule methods are also limited to few simultaneously measurable parameters. We have circumvented these limitations with a multifaceted approach to investigate three structurally distinct aminoglycosides that bind to the aminoacyl-transfer RNA site (A site) in the prokaryotic 30S ribosomal subunit: apramycin, paromomycin, and gentamicin. Using several single-molecule fluorescence measurements combined with structural and biochemical techniques, we observed distinct changes to translational dynamics for each aminoglycoside. While all three drugs effectively inhibit translation elongation, their actions are structurally and mechanistically distinct. Apramycin does not displace A1492 and A1493 at the decoding center, as demonstrated by a solution nuclear magnetic resonance structure, causing only limited miscoding; instead, it primarily blocks translocation. Paromomycin and gentamicin, which displace A1492 and A1493, cause significant miscoding, block intersubunit rotation, and inhibit translocation. Our results show the power of combined dynamics, structural, and biochemical approaches to elucidate the complex mechanisms underlying translation and its inhibition. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Coordinated conformational and compositional dynamics drive ribosome translocation.

During translation elongation, the ribosome compositional factors elongation factor G (EF-G; encoded by fusA) and tRNA alternately bind to the ribosome to direct protein synthesis and regulate the conformation of the ribosome. Here, we use single-molecule fluorescence with zero-mode waveguides to directly correlate ribosome conformation and composition during multiple rounds of elongation at high factor concentrations in Escherichia coli. Our results show that EF-G bound to GTP (EF-G-GTP) continuously samples both rotational states of the ribosome, binding with higher affinity to the rotated state. Upon successful accommodation into the rotated ribosome, the EF-G-ribosome complex evolves through several rate-limiting conformational changes and the hydrolysis of GTP, which results in a transition back to the nonrotated state and in turn drives translocation and facilitates release of both EF-G-GDP and E-site tRNA. These experiments highlight the power of tracking single-molecule conformation and composition simultaneously in real time.


July 7, 2019  |  

Heterogeneous pathways and timing of factor departure during translation initiation.

The initiation of translation establishes the reading frame for protein synthesis and is a key point of regulation. Initiation involves factor-driven assembly at a start codon of a messenger RNA of an elongation-competent 70S ribosomal particle (in bacteria) from separated 30S and 50S subunits and initiator transfer RNA. Here we establish in Escherichia coli, using direct single-molecule tracking, the timing of initiator tRNA, initiation factor 2 (IF2; encoded by infB) and 50S subunit joining during initiation. Our results show multiple pathways to initiation, with orders of arrival of tRNA and IF2 dependent on factor concentration and composition. IF2 accelerates 50S subunit joining and stabilizes the assembled 70S complex. Transition to elongation is gated by the departure of IF2 after GTP hydrolysis, allowing efficient arrival of elongator tRNAs to the second codon presented in the aminoacyl-tRNA binding site (A site). These experiments highlight the power of single-molecule approaches to delineate mechanisms in complex multicomponent systems.


July 7, 2019  |  

Real-time tRNA transit on single translating ribosomes at codon resolution.

Translation by the ribosome occurs by a complex mechanism involving the coordinated interaction of multiple nucleic acid and protein ligands. Here we use zero-mode waveguides (ZMWs) and sophisticated detection instrumentation to allow real-time observation of translation at physiologically relevant micromolar ligand concentrations. Translation at each codon is monitored by stable binding of transfer RNAs (tRNAs)-labelled with distinct fluorophores-to translating ribosomes, which allows direct detection of the identity of tRNA molecules bound to the ribosome and therefore the underlying messenger RNA (mRNA) sequence. We observe the transit of tRNAs on single translating ribosomes and determine the number of tRNA molecules simultaneously bound to the ribosome, at each codon of an mRNA molecule. Our results show that ribosomes are only briefly occupied by two tRNA molecules and that release of deacylated tRNA from the exit (E) site is uncoupled from binding of aminoacyl-tRNA site (A-site) tRNA and occurs rapidly after translocation. The methods outlined here have broad application to the study of mRNA sequences, and the mechanism and regulation of translation.


July 7, 2019  |  

Untangling heteroplasmy, structure, and evolution of an atypical mitochondrial genome by PacBio Sequencing.

The highly compact mitochondrial (mt) genome of terrestrial isopods (Oniscidae) presents two unusual features. First, several loci can individually encode two tRNAs, thanks to single nucleotide polymorphisms at anticodon sites. Within-individual variation (heteroplasmy) at these loci is thought to have been maintained for millions of years because individuals that do not carry all tRNA genes die, resulting in strong balancing selection. Second, the oniscid mtDNA genome comes in two conformations: a ~14 kb linear monomer and a ~28 kb circular dimer comprising two monomer units fused in palindrome. We hypothesized that heteroplasmy actually results from two genome units of the same dimeric molecule carrying different tRNA genes at mirrored loci. This hypothesis, however, contradicts the earlier proposition that dimeric molecules result from the replication of linear monomers-a process that should yield totally identical genome units within a dimer. To solve this contradiction, we used the SMRT (PacBio) technology to sequence mirrored tRNA loci in single dimeric molecules. We show that dimers do present different tRNA genes at mirrored loci; thus covalent linkage, rather than balancing selection, maintains vital variation at anticodons. We also leveraged unique features of the SMRT technology to detect linear monomers closed by hairpins and carrying noncomplementary bases at anticodons. These molecules contain the necessary information to encode two tRNAs at the same locus, and suggest new mechanisms of transition between linear and circular mtDNA. Overall, our analyses clarify the evolution of an atypical mt genome where dimerization counterintuitively enabled further mtDNA compaction. Copyright © 2017 by the Genetics Society of America.


July 7, 2019  |  

Probing the translation dynamics of ribosomes using Zero-Mode Waveguides

In order to coordinate the complex biochemical and structural feat of converting triple-nucleotide codons into their corresponding amino acids, the ribosome must physically manipulate numerous macromolecules including the mRNA, tRNAs, and numerous translation factors. The ribosome choreographs binding, dissociation, physical movements, and structural rearrangements so that they synergistically harness the energy from biochemical processes, including numerous GTP hydrolysis steps and peptide bond formation. Due to the dynamic and complex nature of translation, the large cast of ligands involved, and the large number of possible configurations, tracking the global time evolution or dynamics of the ribosome complex in translation has proven to be challenging for bulk methods. Conventional single-molecule fluorescence experiments on the other hand require low concentrations of fluorescent ligands to reduce background noise. The significantly reduced bimolecular association rates under those conditions limit the number of steps that can be observed within the time window available to a fluorophore. The advent of zero-mode waveguide (ZMW) technology has allowed the study of translation at near-physiological concentrations of labeled ligands, moving single-molecule fluorescence microscopy beyond focused model systems into studying the global dynamics of translation in realistic setups. This chapter reviews the recent works using the ZMW technology to dissect the mechanism of translation initiation and elongation in prokaryotes, including complex processes such as translational stalling and frameshifting. Given the success of the technology, similarly complex biological processes could be studied in near-physiological conditions with the controllability of conventional in vitro experiments. Copyright © 2016 Elsevier Inc. All rights reserved.


July 7, 2019  |  

N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics.

N(6)-methylation of adenosine (forming m(6)A) is the most abundant post-transcriptional modification within the coding region of mRNA, but its role during translation remains unknown. Here, we used bulk kinetic and single-molecule methods to probe the effect of m(6)A in mRNA decoding. Although m(6)A base-pairs with uridine during decoding, as shown by X-ray crystallographic analyses of Thermus thermophilus ribosomal complexes, our measurements in an Escherichia coli translation system revealed that m(6)A modification of mRNA acts as a barrier to tRNA accommodation and translation elongation. The interaction between an m(6)A-modified codon and cognate tRNA echoes the interaction between a near-cognate codon and tRNA, because delay in tRNA accommodation depends on the position and context of m(6)A within codons and on the accuracy level of translation. Overall, our results demonstrate that chemical modification of mRNA can change translational dynamics.


July 7, 2019  |  

Multiple parallel pathways of translation initiation on the CrPV IRES.

The complexity of eukaryotic translation allows fine-tuned regulation of protein synthesis. Viruses use internal ribosome entry sites (IRESs) to minimize or, like the CrPV IRES, eliminate the need for initiation factors. Here, by exploiting the CrPV IRES, we observed the entire process of initiation and transition to elongation in real time. We directly tracked the CrPV IRES, 40S and 60S ribosomal subunits, and tRNA using single-molecule fluorescence spectroscopy and identified multiple parallel initiation pathways within the system. Our results distinguished two pathways of 80S:CrPV IRES complex assembly that produce elongation-competent complexes. Following 80S assembly, the requisite eEF2-mediated translocation results in an unstable intermediate that is captured by binding of the elongator tRNA. Whereas initiation can occur in the 0 and +1 frames, the arrival of the first tRNA defines the reading frame and strongly favors 0 frame initiation. Overall, even in the simplest system, an intricate reaction network regulates translation initiation. Copyright © 2016 Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.