X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
October 12, 2017

Revealing the saline adaptation strategies of the halophilic bacterium Halomonas beimenensis through high-throughput omics and transposon mutagenesis approaches.

Studies on the halotolerance of bacteria are attractive to the fermentation industry. However, a lack of sufficient genomic information has precluded an investigation of the halotolerance of Halomonas beimenensis. Here, we describe the molecular mechanisms of saline adaptation in H. beimenensis based on high-throughput omics and Tn5 transposon mutagenesis. The H. beimenensis genome is 4.05 Mbp and contains 3,807 genes, which were sequenced using short and long reads obtained via deep sequencing. Sixteen Tn5 mutants with a loss of halotolerance were identified. Orthologs of the mutated genes, such as nqrA, trkA, atpC, nadA, and gdhB, have significant biological functions in…

Read More »

July 1, 2017

Insight into the recent genome duplication of the halophilic yeast Hortaea werneckii: combining an improved genome with gene expression and chromatin structure.

Extremophilic organisms demonstrate the flexibility and adaptability of basic biological processes by highlighting how cell physiology adapts to environmental extremes. Few eukaryotic extremophiles have been well studied and only a small number are amenable to laboratory cultivation and manipulation. A detailed characterization of the genome architecture of such organisms is important to illuminate how they adapt to environmental stresses. One excellent example of a fungal extremophile is the halophile Hortaea werneckii (Pezizomycotina, Dothideomycetes, Capnodiales), a yeast-like fungus able to thrive at near-saturating concentrations of sodium chloride and which is also tolerant to both UV irradiation and desiccation. Given its unique…

Read More »

March 20, 2017

Complete genome sequence of the drought resistance-promoting endophyte Klebsiella sp. LTGPAF-6F.

Bacterial endophytes with capacity to promote plant growth and improve plant tolerance against biotic and abiotic stresses have importance in agricultural practice and phytoremediation. A plant growth-promoting endophyte named Klebsiella sp. LTGPAF-6F, which was isolated from the roots of the desert plant Alhagi sparsifolia in north-west China, exhibits the ability to enhance the growth of wheat under drought stress. The complete genome sequence of this strain consists of one circular chromosome and two circular plasmids. From the genome, we identified genes related to the plant growth promotion and stress tolerance, such as nitrogen fixation, production of indole-3-acetic acid, acetoin, 2,3-butanediol,…

Read More »

December 23, 2016

Complete genome sequencing and comparative genomic analysis of the thermotolerant acetic acid bacterium, Acetobacter pasteurianus SKU1108, provide a new insight into thermotolerance.

Acetobacter pasteurianus SKU1108 is a typical thermotolerant acetic acid bacterium. In this study, the complete genome sequence of the SKU1108 strain was elucidated, and information on genomic modifications due to the thermal adaptation of SKU1108 was updated. In order to obtain a clearer understanding of the genetic background responsible for thermotolerance, the SKU1108 genome was compared with those of two closely related complete genome strains, thermotolerant A. pasteurianus 386B and mesophilic A. pasteurianus NBRC 3283. All 24 "thermotolerant genes" required for growth at higher temperatures in the thermotolerant Acetobacter tropicalis SKU1100 strain were conserved in all three strains. However, these…

Read More »

October 17, 2016

The complete genome of Dietzia timorensis ID05-A0528(T) revealed the genetic basis for its saline-alkali tolerance.

The type strain Dietzia timorensis ID05-A0528(T), was reported to be able to survive in the highly saline and alkaline environments with diverse carbon sources. In order to more pertinently understand the genetic mechanisms of its environmental tolerance and crude oil emulsification, we reported the complete genome sequence of the strain in the study. The genome contains only one circular chromosome, with the total size of 3,607,892 bps, and the G+C content of this strain is 65.58%, much lower than other type strains of this genus. It was found that strain ID05-A0528(T) contains genes involved in transportation and biosynthesis of compatible…

Read More »

September 8, 2016

Complete genome sequence of Halomonas sp. R5-57.

The marine Arctic isolate Halomonas sp. R5-57 was sequenced as part of a bioprospecting project which aims to discover novel enzymes and organisms from low-temperature environments, with potential uses in biotechnological applications. Phenotypically, Halomonas sp. R5-57 exhibits high salt tolerance over a wide range of temperatures and has extra-cellular hydrolytic activities with several substrates, indicating it secretes enzymes which may function in high salinity conditions. Genome sequencing identified the genes involved in the biosynthesis of the osmoprotectant ectoine, which has applications in food processing and pharmacy, as well as those involved in production of polyhydroxyalkanoates, which can serve as precursors…

Read More »

July 20, 2016

Complete genome sequence of a low-temperature active and alkaline-stable endoglucanase-producing Paenibacillus sp. strain IHB B 3084 from the Indian Trans-Himalayas.

A genome of 5.88Mb with 46.83% G+C content is reported for an endoglucanase-producing bacterium Paenibacillus sp. strain IHB B 3084 isolated from the cold environments of the Indian Trans-Himalayas. The psychrotrophic bacterium produces low-temperature active and alkaline-stable endoglucanases of industrial importance. The genomic data has provided insight into genomic basis of cellulase production and survival of the bacterium in the cold environments. Copyright © 2016. Published by Elsevier B.V.

Read More »

June 9, 2016

Complete genome sequence of Lysinibacillus sphaericus WHO reference strain 2362.

Lysinibacillus sphaericus is a species that contains strains widely used in the biological control of mosquitoes. Here, we present the complete 4.67-Mb genome of the WHO entomopathogenic reference strain L. sphaericus 2362, which is probably one of the most commercialized and studied strains. Genes coding for mosquitocidal toxin proteins were detected. Copyright © 2016 Hernández-Santana et al.

Read More »

May 10, 2016

Complete genome sequence of opine-utilizing Variovorax sp. strain PAMC28711 isolated from an Antarctic lichen.

We report the complete genome sequence of Variovorax sp. strain PAMC28711 isolated from the Antarctic lichen Himantormia sp. Whole genome sequencing revealed opine oxidase- and octopine dehydrogenase-related gene clusters that are involved in octopine utilization. These data will lead to future genetic and biochemical studies on the unusual catabolic traits of opine and octopine utilization in extremely cold environments. Copyright © 2016 Elsevier B.V. All rights reserved.

Read More »

April 20, 2016

Complete genome sequence of a bacterium Pseudomonas fragi P121, a strain with degradation of toxic compounds.

A newly isolated strain P121 was identified as Pseudomonas fragi. The complete genome sequence of P.fragi P121 was carried out using the PacBio RS? platform. The genome contains a circular chromosome with 5,101,809bp. The genome sequence suggests that the P121 exhibited the ability of degradation of toxic compounds. Genome sequencing information provides the genetic basis for the analysis of toxic compounds and the mechanism of extreme environmental adaptation of the strain. Copyright © 2016. Published by Elsevier B.V.

Read More »

April 7, 2016

Complete genome sequence of Hymenobacter sp. strain PAMC26554, an ionizing radiation-resistant bacterium isolated from an Antarctic lichen.

A Gram-negative, rod-shaped, red-pink in color, and UV radiation-resistant bacterium Hymenobacter sp. strain PAMC26554 was isolated from Usnea sp., an Antarctic lichen, and belongs to the class of Cytophagia and the phylum of Bacteroidetes. The complete genome of Hymenobacter sp. PAMC26554 consists of one chromosome (5,244,843bp) with two plasmids (199,990bp and 6421bp). The genomic sequence indicates that Hymenobacter sp. strain PAMC26554 possesses several genes involved in the nucleotide excision repair pathway that protects damaged DNA. This complete genome information will help us to understand its adaptation and novel survival strategy in the Antarctic extreme cold environment. Copyright © 2016 Elsevier…

Read More »

March 14, 2016

Complete genome sequence of Acinetobacter sp. TTH0-4, a cold-active crude oil degrading strain isolated from Qinghai-Tibet Plateau.

Acinetobacter sp. strain TTH0-4 was isolated from a permafrost region in Qinghai-Tibet Plateau. With its capability to degrade crude oil at low temperature, 10°C, the strain could be an excellent candidate for the bioremediation of crude oil pollution in cold areas or at cold seasons. We sequenced and annotated the whole genome to serve as a basis for further elucidation of the genetic background of this promising strain, and provide opportunities for investigating the metabolic and regulatory mechanisms and optimizing the biodegradative activity in cold environment. Copyright © 2016. Published by Elsevier B.V.

Read More »

February 10, 2016

Complete genome sequence of Staphylococcus equorum KS1039 isolated from Saeu-jeotgal, Korean high-salt-fermented seafood.

Staphylococcus equorum KS1039 was isolated from a form of traditional Korean high-salt-fermented seafood called Saeu-jeotgal, and exhibited growth at a NaCl (w/v) concentration of 25%. Comparative genome analyses with two other strains revealed the presence of two potassium voltage-gated channel genes uniquely in KS1039, which might be involved in salt tolerance. This first complete genome sequence of the species will increase our understanding of the genetic factors allowing it to be safely consumed by humans and to inhabit high-salt environments. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

January 19, 2016

Complete genome sequence of Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium tolerant to cold and radiations isolated from Sikkim Himalaya.

Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium which exhibited tolerance to cold and UV radiations was isolated from the glacial stream of East Rathong glacier in Sikkim Himalaya. Here we report the 4.3 Mb complete genome assembly that has provided the basis for potential role of pigments as a survival strategy to combat stressed environment of cold and high UV-radiation and additionally the ability to produce cold active industrial enzymes. Copyright © 2016. Published by Elsevier B.V.

Read More »

1 2

Subscribe for blog updates:

Archives