Menu
August 19, 2021  |  

Product note — Fast, high-resolution DNA sizing with the fragment analyzer system

The Agilent 5200, 5300, and 5400 Fragment Analyzer instruments are fast, high-resolution benchtop capillary electrophoresis (CE) platforms that utilize proprietary markers to accurately size fragments ranging from 10 to 50 kb. This platform allows important DNA quality checkpoints to be completed in one hour for de novo large-genome sequencing projects and other PacBio applications leveraging multi-kilobase read lengths. The instrument can be used in place of time-consuming QC steps involving pulsed field gel electrophoresis (PFGE), saving time by avoiding multiple overnight gel runs when preparing large-insert SMRTbell libraries. Alternative DNA-sizing instruments cannot accurately resolve large DNA fragments in this range.


June 1, 2021  |  

Evaluation of multiplexing strategies for HLA genotyping using PacBio Sequencing technology.

Fully phased allele-level sequencing of highly polymorphic HLA genes is greatly facilitated by SMRT Sequencing technology. In the present work, we have evaluated multiple DNA barcoding strategies for multiplexing several loci from multiple individuals, using three different tagging methods. Specifically MHC class I genes HLA-A, -B, and –C were indexed via DNA Barcodes by either tailed primers or barcoded SMRTbell adapters. Eight different 16-bp barcode sequences were used in symmetric & asymmetric pairing. Eight DNA barcoded adapters in symmetric pairing were independently ligated to a pool of HLA-A, -B and –C for eight different individuals, one at a time and pooled for sequencing on a single SMRT Cell. Amplicons generated from barcoded primers were pooled upfront for library generation. Eight symmetric barcoded primers were generated for HLA class I genes. These primers facilitated multiplexing of 8 samples and also allowed generation of unique asymmetric pairings for simultaneous amplification from 28 reference genomic DNA samples. The data generated from all 3 methods was analyzed using LAA protocol in SMRT analysis V2.3. Consensus sequences generated were typed using GenDx NGS engine HLA-typing software.


June 1, 2021  |  

Impact of DNA quality on PacBio RS II read lengths.

Maximizing the read length of next generation sequencing (NGS) facilitates de novo genome assembly. Currently, the PacBio RS II system leads the industry with respect to maximum possible NGS read lengths. Amplicon Express specializes in preparation of high molecular weight, NGS-grade genomic DNA for a variety of applications, including next generation sequencing. This study was performed to evaluate the effects of gDNA quality on PacBio RS II read length.


June 1, 2021  |  

Targeted SMRT Sequencing and phasing using Roche NimbleGen’s SeqCap EZ enrichment

As a cost-effective alternative to whole genome human sequencing, targeted sequencing of specific regions, such as exomes or panels of relevant genes, has become increasingly common. These methods typically include direct PCR amplification of the genomic DNA of interest, or the capture of these targets via probe-based hybridization. Commonly, these approaches are designed to amplify or capture exonic regions and thereby result in amplicons or fragments that are a few hundred base pairs in length, a length that is well-addressed with short-read sequencing technologies. These approaches typically provide very good coverage and can identify SNPs in the targeted region, but are unable to haplotype these variants. Here we describe a targeted sequencing workflow that combines Roche NimbleGen’s SeqCap EZ enrichment technology with Pacific Biosciences’ SMRT Sequencing to provide a more comprehensive view of variants and haplotype information over multi-kilobase regions. While the SeqCap EZ technology is typically used to capture 200 bp fragments, we demonstrate that 6 kb fragments can also be utilized to enrich for long fragments that extend beyond the targeted capture site and well into (and often across) the flanking intronic regions. When combined with the long reads of SMRT Sequencing, multi-kilobase regions of the human genome can be phased and variants detected in exons, introns and intergenic regions.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.