Menu
July 7, 2019  |  

The Lysobacter capsici AZ78 genome has a gene pool enabling it to interact successfully with phytopathogenic microorganisms and environmental factors.

Lysobacter capsici AZ78 has considerable potential for biocontrol of phytopathogenic microorganisms. However, lack of information about genetic cues regarding its biological characteristics may slow down its exploitation as a biofungicide. In order to obtain a comprehensive overview of genetic features, the L. capsici AZ78 genome was sequenced, annotated and compared with the phylogenetically related pathogens Stenotrophomonas malthophilia K729a and Xanthomonas campestris pv. campestris ATCC 33913. Whole genome comparison, supported by functional analysis, indicated that L. capsici AZ78 has a larger number of genes responsible for interaction with phytopathogens and environmental stress than S. malthophilia K729a and X. c. pv. campestris ATCC 33913. Genes involved in the production of antibiotics, lytic enzymes and siderophores were specific for L. capsici AZ78, as well as genes involved in resistance to antibiotics, environmental stressors, fungicides and heavy metals. The L. capsici AZ78 genome did not encompass genes involved in infection of humans and plants included in the S. malthophilia K729a and X. c. pv. campestris ATCC 33913 genomes, respectively. The L. capsici AZ78 genome provides a genetic framework for detailed analysis of other L. capsici members and the development of novel biofungicides based on this bacterial strain.


July 7, 2019  |  

The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes.

Plant-parasitic nematodes were found in 4 of the 12 clades of phylum Nematoda. These nematodes in different clades may have originated independently from their free-living fungivorous ancestors. However, the exact evolutionary process of these parasites is unclear. Here, we sequenced the genome sequence of a migratory plant nematode, Ditylenchus destructor We performed comparative genomics among the free-living nematode, Caenorhabditis elegans and all the plant nematodes with genome sequences available. We found that, compared with C. elegans, the core developmental control processes underwent heavy reduction, though most signal transduction pathways were conserved. We also found D. destructor contained more homologies of the key genes in the above processes than the other plant nematodes. We suggest that Ditylenchus spp. may be an intermediate evolutionary history stage from free-living nematodes that feed on fungi to obligate plant-parasitic nematodes. Based on the facts that D. destructor can feed on fungi and has a relatively short life cycle, and that it has similar features to both C. elegans and sedentary plant-parasitic nematodes from clade 12, we propose it as a new model to study the biology, biocontrol of plant nematodes and the interaction between nematodes and plants.© 2016 The Author(s).


July 7, 2019  |  

Whole-genome sequencing recommendations

Recent technological developments have revolutionized the way we perform genetic analyses. In particular whole-genome sequencing provides access to the entire genetic makeup of an individual, and it is now an affordable approach for many research groups. As a consequence genome sequencing is pervading many fields of biological research. Sequencing technologies are evolving rapidly and so do their applications. Here we provide a first primer on whole-genome sequencing, focusing on two of the most popular applications: (1) de novo genome sequencing, in which the objective is obtaining a high-quality genome assembly that can serve as a reference for a species or variety, and (2) genome resequencing, when there is an available reference genome and the objective is to map sequence variation of an individual or a set of individuals. It is not our intention to provide a comprehensive overview of current methodologies that will likely soon become obsolete, but rather focus on general principles that will have a more general applicability.


July 7, 2019  |  

Whole genomic sequence analysis of Bacillus infantis: defining the genetic blueprint of strain NRRL B-14911, an emerging cardiopathogenic microbe.

We recently reported the identification of Bacillus sp. NRRL B-14911 that induces heart autoimmunity by generating cardiac-reactive T cells through molecular mimicry. This marine bacterium was originally isolated from the Gulf of Mexico, but no associations with human diseases were reported. Therefore, to characterize its biological and medical significance, we sought to determine and analyze the complete genome sequence of Bacillus sp. NRRL B-14911.Based on the phylogenetic analysis of 16S ribosomal RNA (rRNA) genes, sequence analysis of the 16S-23S rDNA intergenic transcribed spacers, phenotypic microarray, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we propose that this organism belongs to the species Bacillus infantis, previously shown to be associated with sepsis in a newborn child. Analysis of the complete genome of Bacillus sp. NRRL B-14911 revealed several virulence factors including adhesins, invasins, colonization factors, siderophores and transporters. Likewise, the bacterial genome encodes a wide range of methyl transferases, transporters, enzymatic and biochemical pathways, and insertion sequence elements that are distinct from other closely related bacilli.The complete genome sequence of Bacillus sp. NRRL B-14911 provided in this study may facilitate genetic manipulations to assess gene functions associated with bacterial survival and virulence. Additionally, this bacterium may serve as a useful tool to establish a disease model that permits systematic analysis of autoimmune events in various susceptible rodent strains.


July 7, 2019  |  

Molecular evolution of a Klebsiella pneumoniae ST278 isolate harboring blaNDM-7 and involved in nosocomial transmission.

During 2013, ST278 Klebsiella pneumoniae with blaNDM-7 was isolated from the urine (KpN01) and rectum (KpN02) of a patient in Calgary, Canada. The same strain (KpN04) was subsequently isolated from another patient in the same unit. Interestingly, a carbapenem-susceptible K. pneumoniae ST278 (KpN06) was obtained 1 month later from the blood of the second patient. Next-generation sequencing (NGS) revealed that the loss of carbapenem-resistance in KpN06 was due to a 5-kb deletion on the blaNDM-7-harboring IncX3 plasmid. In addition, an IncFIB plasmid in KpN06 had a 27-kb deletion that removed genes encoding for heavy metal resistance. Phylogenetic analysis showed that the K. pneumoniae ST278 from patient 2 was likely a descendant of KpN02 and that KpN06 was a close progenitor of an environmental ST278. It is unclear whether KpN06 lost the blaNDM-7 gene in vivo. This study detailed the remarkable plasticity and speed of evolutionary changes in multidrug-resistant K. pneumoniae, demonstrating the highly recombinant nature of this species. It also highlights the ability of NGS to clarify molecular microevolutionary events within antibiotic-resistant organisms.© The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.


July 7, 2019  |  

Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems.

Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. Here, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding and modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019  |  

Draft genome sequences of Armillaria fuscipes, Ceratocystiopsis minuta, Ceratocystis adiposa, Endoconidiophora laricicola, E. polonica and Penicillium freii DAOMC 242723.

The genomes of Armillaria fuscipes, Ceratocystiopsis minuta, Ceratocystis adiposa, Endoconidiophora laricicola, E. polonica, and Penicillium freii DAOMC 242723 are presented in this genome announcement. These six genomes are from plant pathogens and otherwise economically important fungal species. The genome sizes range from 21 Mb in the case of Ceratocystiopsis minuta to 58 Mb for the basidiomycete Armillaria fuscipes. These genomes include the first reports of genomes for the genus Endoconidiophora. The availability of these genome data will provide opportunities to resolve longstanding questions regarding the taxonomy of species in these genera. In addition these genome sequences through comparative studies with closely related organisms will increase our understanding of how these pathogens cause disease.


July 7, 2019  |  

Use of genomic approaches in understanding the role of Actinomycetes as PGP in grain legumes

The advancement in molecular technologies has given a breakthrough to explore the untapped and novel microbial isolates for characterization in every aspect as we can consider microbes as an important primary natural store house for key secondary metabolites and enzymes. Actinomycetes are the most fruitful source of microorganisms for all types of bioactive secondary metabolites, including agroactive-antibiotic molecules that are best recognized and most valuable for their role in agriculture and industries. In agriculture, actinomycetes are used as biocontrol agents against some pests and pathogenic organisms as well as plant growth-promoting (PGP) agents for crops. Use of different molecular methods, e.g., metagenomics, metatranscriptomics, genetic fingerprinting, proteogenomics, and metaproteomics, are more significant for classifying and discovering the immense diversity in microbial population and for understanding their interactions with other abiotic and biotic environmental elements. The opportunity of accessing inexpensive sequencing techniques has led to the assemblies of copious genomic data for actinomycetes, such as Streptomyces and related species, with the goal of discovering novel bioactive metabolic and their utility as PGP; however, the use of actinomycetes in agriculture using genomic approaches is in its initial stages.


July 7, 2019  |  

Short tandem repeat number estimation from paired-end reads for multiple individuals by considering coalescent tree.

Two types of approaches are mainly considered for the repeat number estimation in short tandem repeat (STR) regions from high-throughput sequencing data: approaches directly counting repeat patterns included in sequence reads spanning the region and approaches based on detecting the difference between the insert size inferred from aligned paired-end reads and the actual insert size. Although the accuracy of repeat numbers estimated with the former approaches is high, the size of target STR regions is limited to the length of sequence reads. On the other hand, the latter approaches can handle STR regions longer than the length of sequence reads. However, repeat numbers estimated with the latter approaches is less accurate than those with the former approaches.We proposed a new statistical model named coalescentSTR that estimates repeat numbers from paired-end read distances for multiple individuals simultaneously by connecting the read generative model for each individual with their genealogy. In the model, the genealogy is represented by handling coalescent trees as hidden variables, and the summation of the hidden variables is taken on coalescent trees sampled based on phased genotypes located around a target STR region with Markov chain Monte Carlo. In the sampled coalescent trees, repeat number information from insert size data is propagated, and more accurate estimation of repeat numbers is expected for STR regions longer than the length of sequence reads. For finding the repeat numbers maximizing the likelihood of the model on the estimation of repeat numbers, we proposed a state-of-the-art belief propagation algorithm on sampled coalescent trees.We verified the effectiveness of the proposed approach from the comparison with existing methods by using simulation datasets and real whole genome and whole exome data for HapMap individuals analyzed in the 1000 Genomes Project.


July 7, 2019  |  

Salmonella degrades the host glycocalyx leading to altered infection and glycan remodeling.

Complex glycans cover the gut epithelial surface to protect the cell from the environment. Invasive pathogens must breach the glycan layer before initiating infection. While glycan degradation is crucial for infection, this process is inadequately understood. Salmonella contains 47 glycosyl hydrolases (GHs) that may degrade the glycan. We hypothesized that keystone genes from the entire GH complement of Salmonella are required to degrade glycans to change infection. This study determined that GHs recognize the terminal monosaccharides (N-acetylneuraminic acid (Neu5Ac), galactose, mannose, and fucose) and significantly (p?


July 7, 2019  |  

Carbon flux and carbohydrate gene families in pineapple

The recently sequenced pineapple genome was used to identify and analyze some of the key gene families involved in carbohydrate biosynthesis, breakdown and modification. Gene products were grouped into glycosyltransferases (GT), glycoside hydrolases (GH), carbohydrate esterases (CE), and polysaccharide lyases (PL) based upon predicted catalytic activity. Non-catalytic carbohydrate-binding modules (CBM) and enzymes involved in lignification were also identified. The pineapple genes were compared with those from two and five monocot and eudicots species, respectively. The complement of pineapple sugar and cell wall metabolism genes is similar to that found in rice and sorghum, though the numbers of GTs and GHs is often fewer. This applies to a lesser extent to the genes involved in nucleotide-sugar interconversion, with both pineapple and papaya having a minimum complement. Interestingly, pineapple does not appear to contain mixed linkage ß-glucan in its walls while possessing cellulose synthase-like (Csl), J and H genes. Pineapple and papaya have less than half the number of GT1 genes involved in small molecule glycosylation compared to Arabidopsis and tomato, and fewer members in GH families than Arabidopsis. The ratio of rice and sorghum to pineapple genes in GH families was more variable than in the case of GTs and it is unclear why pineapple GH gene numbers are so low. Rice, sorghum and pineapple have far fewer CE8, PL1 and GH28 genes related to pectin metabolism than most eudicots. The general lower number of cell wall genes in pineapple possibly reflects the absence of a genome duplication event. The data also suggests that pineapple straddles the boundary between grasses (family Poaceae) and eudicots in terms of genes involved in carbohydrate metabolism, which is also reflected in its cell wall composition.


July 7, 2019  |  

Complete genome sequence of the D-amino acid catabolism bacterium Phaeobacter sp. strain JL2886, isolated from deep seawater of the South China Sea

Phaeobacter sp. strain JL2886, isolated from deep seawater of the South China Sea, can catabolize d-amino acids. Here, we report the complete genome sequence of Phaeobacter sp. JL2886. It comprises ~4.06 Mbp, with a G+C content of 61.52%. A total of 3,913 protein-coding genes and 10 genes related to d-amino acid catabolism were obtained. Copyright © 2016 Fu et al.


July 7, 2019  |  

Privacy-preserving read mapping using locality sensitive hashing and secure kmer voting

The recent explosion in the amount of available genome sequencing data imposes high computational demands on the tools designed to analyze it. Low-cost cloud computing has the potential to alleviate this burden. However, moving personal genome data analysis to the cloud raises serious privacy concerns. Read alignment is a critical and computationally intensive first step of most genomic data analysis pipelines. While significant effort has been dedicated to optimize the sensitivity and runtime efficiency of this step, few approaches have addressed outsourcing this computation securely to an untrusted party. The few secure solutions that have been proposed either do not scale to whole genome sequencing datasets or are not competitive with the state of the art in read mapping. In this paper, we present BALAUR, a privacy-preserving read mapping algorithm based on locality sensitive hashing and secure kmer voting. BALAUR securely outsources a significant portion of the computation to the public cloud by formulating the alignment task as a voting scheme between encrypted read and reference kmers. Our approach can easily handle typical genome-scale datasets and is highly competitive with non-cryptographic state-of-the-art read aligners in both accuracy and runtime performance on simulated and real read data. Moreover, our approach is significantly faster than state-of-the-art read aligners in long read mapping.


July 7, 2019  |  

Genomic and transcriptomic analyses of the tangerine pathotype of Alternaria alternata in response to oxidative stress.

The tangerine pathotype of Alternaria alternata produces the A. citri toxin (ACT) and is the causal agent of citrus brown spot that results in significant yield losses worldwide. Both the production of ACT and the ability to detoxify reactive oxygen species (ROS) are required for A. alternata pathogenicity in citrus. In this study, we report the 34.41?Mb genome sequence of strain Z7 of the tangerine pathotype of A. alternata. The host selective ACT gene cluster in strain Z7 was identified, which included 25 genes with 19 of them not reported previously. Of these, 10 genes were present only in the tangerine pathotype, representing the most likely candidate genes for this pathotype specialization. A transcriptome analysis of the global effects of H2O2 on gene expression revealed 1108 up-regulated and 498 down-regulated genes. Expressions of those genes encoding catalase, peroxiredoxin, thioredoxin and glutathione were highly induced. Genes encoding several protein families including kinases, transcription factors, transporters, cytochrome P450, ubiquitin and heat shock proteins were found associated with adaptation to oxidative stress. Our data not only revealed the molecular basis of ACT biosynthesis but also provided new insights into the potential pathways that the phytopathogen A. alternata copes with oxidative stress.


July 7, 2019  |  

Building two indica rice reference genomes with PacBio long-read and Illumina paired-end sequencing data.

Over the past 30 years, we have performed many fundamental studies on two Oryza sativa subsp. indica varieties, Zhenshan 97 (ZS97) and Minghui 63 (MH63). To improve the resolution of many of these investigations, we generated two reference-quality reference genome assemblies using the most advanced sequencing technologies. Using PacBio SMRT technology, we produced over 108 (ZS97) and 174 (MH63) Gb of raw sequence data from 166 (ZS97) and 209 (MH63) pools of BAC clones, and generated ~97 (ZS97) and ~74 (MH63) Gb of paired-end whole-genome shotgun (WGS) sequence data with Illumina sequencing technology. With these data, we successfully assembled two platinum standard reference genomes that have been publicly released. Here we provide the full sets of raw data used to generate these two reference genome assemblies. These data sets can be used to test new programs for better genome assembly and annotation, aid in the discovery of new insights into genome structure, function, and evolution, and help to provide essential support to biological research in general.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.