X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Identification of candidate genes at the Dp-fl locus conferring resistance against the rosy apple aphid Dysaphis plantaginea

The cultivated apple is susceptible to several pests including the rosy apple aphid (RAA; Dysaphis plantaginea Passerini), control of which is mainly based on chemical treatments. A few cases of resistance to aphids have been described in apple germplasm resources, laying the basis for the development of new resistant cultivars by breeding. The cultivar ‘Florina’ is resistant to RAA, and recently, the Dp-fl locus responsible for its resistance was mapped on linkage group 8 of the apple genome. In this paper, a chromosome walking approach was performed by using a ‘Florina’ bacterial artificial chromosome (BAC) library. The walking started from…

Read More »

Friday, July 19, 2019

Biosynthesis of the novel macrolide antibiotic anthracimycin.

We report the identification of the biosynthetic gene cluster for the unusual antibiotic anthracimycin (atc) from the marine derived producer strain Streptomyces sp. T676 isolated off St. John’s Island, Singapore. The 53?253 bps atc locus includes a trans-acyltransferase (trans-AT) polyketide synthase (PKS), and heterologous expression in Streptomyces coelicolor resulted in anthracimycin production. Analysis of the atc cluster revealed that anthracimycin is likely generated by four PKS gene products AtcC-AtcF without involvement of post-PKS tailoring enzymes, and a biosynthetic pathway is proposed. The availability of the atc cluster provides a basis for investigating the biosynthesis of anthracimycin and its subsequent bioengineering…

Read More »

Friday, July 19, 2019

Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing.

Global yields of potato and tomato crops have fallen owing to potato late blight disease, which is caused by Phytophthora infestans. Although most commercial potato varieties are susceptible to blight, many wild potato relatives show variation for resistance and are therefore a potential source of Resistance to P. infestans (Rpi) genes. Resistance breeding has exploited Rpi genes from closely related tuber-bearing potato relatives, but is laborious and slow. Here we report that the wild, diploid non-tuber-bearing Solanum americanum harbors multiple Rpi genes. We combine resistance (R) gene sequence capture (RenSeq) with single-molecule real-time (SMRT) sequencing (SMRT RenSeq) to clone Rpi-amr3i.…

Read More »

Sunday, July 7, 2019

Neisseria lactamica Y92-1009 complete genome sequence.

We present the high quality, complete genome assembly of Neisseria lactamica Y92-1009 used to manufacture an outer membrane vesicle (OMV)-based vaccine, and a member of the Neisseria genus. The strain is available on request from the Public Health England Meningococcal Reference Unit. This Gram negative, dipplococcoid bacterium is an organism of worldwide clinical interest because human nasopharyngeal carriage is related inversely to the incidence of meningococcal disease, caused by Neisseria meningitidis. The organism sequenced was isolated during a school carriage survey in Northern Ireland in 1992 and has been the subject of a variety of laboratory and clinical studies. Four…

Read More »

Sunday, July 7, 2019

First detailed genetic characterization of the structural organization of type III arginine catabolic mobile elements harbored by Staphylococcus epidermidis by using whole-genome sequencing.

The type III arginine catabolic mobile element (ACME) was detected in three Staphylococcus epidermidis oral isolates recovered from separate patients (one healthy, one healthy with dental implants, and one with periodontal disease) based on ACME-arc-operon- and ACME-opp3-operon-directed PCR. These isolates were subjected to whole-genome sequencing to characterize the precise structural organization of ACME III for the first time, which also revealed that all three isolates were the same sequence type, ST329. Copyright © 2017 McManus et al.

Read More »

Sunday, July 7, 2019

First report of cfr-encoding plasmids in the pandemic sequence type (ST) 22 methicillin-resistant Staphylococcus aureus Staphylococcal cassette chromosome mec type-IV clone.

Linezolid is often the drug of last resort for serious methicillin-resistant Staphylococcus aureus (MRSA) infections. Linezolid resistance is mediated by mutations in 23S rRNA and genes for ribosomal proteins, cfr encoding phenicol, lincosamide, oxazolidinone, pleuromutilin and streptogramin A (PhLOPSA) resistance, its homolgue cfr(B) or optrA conferring oxazolidinone and phenicol resistance. Linezolid resistance is rare in S. aureus, and cfr even rarer. This study investigated the clonality and linezolid resistance mechanisms of two MRSA isolates from patients in separate Irish hospitals. Isolates were subjected to cfr PCR, PhLOPSA susceptibility testing, 23S rRNA PCR and sequencing, DNA microarray profiling, spa typing, pulsed-field…

Read More »

Sunday, July 7, 2019

A pigeonpea gene confers resistance to Asian soybean rust in soybean.

Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, is one of the most economically important crop diseases, but is only treatable with fungicides, which are becoming less effective owing to the emergence of fungicide resistance. There are no commercial soybean cultivars with durable resistance to P. pachyrhizi, and although soybean resistance loci have been mapped, no resistance genes have been cloned. We report the cloning of a P. pachyrhizi resistance gene CcRpp1 (Cajanus cajan Resistance against Phakopsora pachyrhizi 1) from pigeonpea (Cajanus cajan) and show that CcRpp1 confers full resistance to P. pachyrhizi in soybean. Our findings show…

Read More »

Subscribe for blog updates:

Archives