X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
May 1, 2019

Germline murine immunoglobulin IGHV genes in wild-derived and classical inbred strains: a comparison

To better understand the subspecies origin of antibody genes in classical inbred mouse strains, the IGH gene loci of four wild-derived mouse strains were explored by analysis of VDJ gene rearrangements. A total of 341 unique IGHV gene sequences were inferred in the wild-derived strains, including 247 sequences that have not previously been reported. The genes of the Non-Obese Diabetic (NOD) strain were also documented, and all but one of the 84 inferred NOD IGHV genes have previously been observed in C57BL/6 mice. This is surprising because the Swiss mouse-derived NOD strain and the C57BL/6 strain have no known shared…

Read More »

January 18, 2019

The landscape of SNCA transcripts across synucleinopathies: New insights from long reads sequencing analysis

Dysregulation of alpha-synuclein expression has been implicated in the pathogenesis of synucleinopathies, in particular, Parkinsontextquoterights Disease (PD) and Dementia with Lewy bodies (DLB). Previous studies have shown that the alternatively spliced isoforms of the SNCA gene are differentially expressed in different parts of the brain for PD and DLB patients. Similarly, SNCA isoforms with skipped exons can have a functional impact on the protein domains. The large intronic region of the SNCA gene was also shown to harbor structural variants that affect transcriptional levels. Here we apply the first study of using long read sequencing with targeted capture of both…

Read More »

January 1, 2019

Schizophrenia risk variants influence multiple classes of transcripts of sorting nexin 19 (SNX19).

Genome-wide association studies (GWAS) have identified many genomic loci associated with risk for schizophrenia, but unambiguous identification of the relationship between disease-associated variants and specific genes, and in particular their effect on risk conferring transcripts, has proven difficult. To better understand the specific molecular mechanism(s) at the schizophrenia locus in 11q25, we undertook cis expression quantitative trait loci (cis-eQTL) mapping for this 2 megabase genomic region using postmortem human brain samples. To comprehensively assess the effects of genetic risk upon local expression, we evaluated multiple transcript features: genes, exons, and exon-exon junctions in multiple brain regions-dorsolateral prefrontal cortex (DLPFC), hippocampus,…

Read More »

January 1, 2019

NCF1 (p47phox)-deficient chronic granulomatous disease: comprehensive genetic and flow cytometric analysis.

Mutations in NCF1 (p47phox) cause autosomal recessive chronic granulomatous disease (CGD) with abnormal dihydrorhodamine (DHR) assay and absent p47phox protein. Genetic identification of NCF1 mutations is complicated by adjacent highly conserved (>98%) pseudogenes (NCF1B and NCF1C). NCF1 has GTGT at the start of exon 2, whereas the pseudogenes each delete 1 GT (?GT). In p47phox CGD, the most common mutation is ?GT in NCF1 (c.75_76delGT; p.Tyr26fsX26). Sequence homology between NCF1 and its pseudogenes precludes reliable use of standard Sanger sequencing for NCF1 mutations and for confirming carrier status. We first established by flow cytometry that neutrophils from p47phox CGD patients…

Read More »

January 1, 2019

Targeted Long-Read RNA Sequencing Demonstrates Transcriptional Diversity Driven by Splice-Site Variation in MYBPC3

Background: Clinical sequencing has traditionally focused on genomic DNA through the use of targeted panels and exome sequencing, rather than investigating the potential transcriptomic consequences of disease-associated variants. RNA sequencing has recently been shown to be an effective additional tool for identifying disease-causing variants. We here use targeted long-read genome and transcriptome sequencing to efficiently and economically identify molecular consequences of a rare, disease-associated variant in hypertrophic cardiomyopathy (HCM). Methods and Results: Our study, which employed both Pacific Biosciences SMRT sequencing and Oxford Nanopore Technologies MinION sequencing, as well as two RNA targeting strategies, identified alternatively-spliced isoforms that resulted from…

Read More »

December 10, 2018

Tutorial: Iso-Seq analysis application [SMRT Link v6.0.0]

This tutorial provides an overview of the Isoform Sequence (Iso-Seq) analysis application. The Iso-Seq application provides reads that span entire transcript isoforms, from the 5' end to the 3' poly A-tail. Generation of accurate, full-length transcript sequences greatly simplifies analysis by eliminating the need for transcript reconstruction to infer isoforms using error-prone assembly of short RNA-seq reads. This tutorial covers features of SMRT Link v6.0.0.

Read More »

December 1, 2018

NOVA1 directs PTBP1 to hTERT pre-mRNA and promotes telomerase activity in cancer cells.

Alternative splicing is dysregulated in cancer cells, driving the production of isoforms that allow tumor cells to survive and continuously proliferate. Part of the reactivation of telomerase involves the splicing of hTERT transcripts to produce full-length (FL) TERT. Very few splicing factors to date have been described to interact with hTERT and promote the production of FL TERT. We recently described one such splicing factor, NOVA1, that acts as an enhancer of FL hTERT splicing, increases telomerase activity, and promotes telomere maintenance in cancer cells. NOVA1 is expressed primarily in neurons and is involved in neurogenesis. In the present studies,…

Read More »

December 1, 2018

Extensive alternative splicing of KIR transcripts.

The killer-cell Ig-like receptors (KIR) form a multigene entity involved in modulating immune responses through interactions with MHC class I molecules. The complexity of the KIR cluster is reflected by, for instance, abundant levels of allelic polymorphism, gene copy number variation, and stochastic expression profiles. The current transcriptome study involving human and macaque families demonstrates that KIR family members are also subjected to differential levels of alternative splicing, and this seems to be gene dependent. Alternative splicing may result in the partial or complete skipping of exons, or the partial inclusion of introns, as documented at the transcription level. This…

Read More »

December 1, 2018

CRISPR/Cas9 deletions in a conserved exon of Distal-less generates gains and losses in a recently acquired morphological novelty in flies.

Distal-less has been repeatedly co-opted for the development of many novel traits. Here, we document its curious role in the development of a novel abdominal appendage ("sternite brushes") in sepsid flies. CRISPR/Cas9 deletions in the homeodomain result in losses of sternite brushes, demonstrating that Distal-less is necessary for their development. However, deletions in the upstream coding exon (Exon 2) produce losses or gains of brushes. A dissection of Exon 2 reveals that the likely mechanism for gains involves a deletion in an exon-splicing enhancer site that leads to exon skipping. Such contradictory phenotypes are also observed in butterflies, suggesting that…

Read More »

November 21, 2018

Somatic APP gene recombination in Alzheimer’s disease and normal neurons.

The diversity and complexity of the human brain are widely assumed to be encoded within a constant genome. Somatic gene recombination, which changes germline DNA sequences to increase molecular diversity, could theoretically alter this code but has not been documented in the brain, to our knowledge. Here we describe recombination of the Alzheimer's disease-related gene APP, which encodes amyloid precursor protein, in human neurons, occurring mosaically as thousands of variant 'genomic cDNAs' (gencDNAs). gencDNAs lacked introns and ranged from full-length cDNA copies of expressed, brain-specific RNA splice variants to myriad smaller forms that contained intra-exonic junctions, insertions, deletions, and/or single…

Read More »

November 1, 2018

Integrative analysis of three RNA sequencing methods identifies mutually exclusive exons of MADS-box isoforms during early bud development in Picea abies.

Recent efforts to sequence the genomes and transcriptomes of several gymnosperm species have revealed an increased complexity in certain gene families in gymnosperms as compared to angiosperms. One example of this is the gymnosperm sister clade to angiosperm TM3-like MADS-box genes, which at least in the conifer lineage has expanded in number of genes. We have previously identified a member of this sub-clade, the conifer gene DEFICIENS AGAMOUS LIKE 19 (DAL19), as being specifically upregulated in cone-setting shoots. Here, we show through Sanger sequencing of mRNA-derived cDNA and mapping to assembled conifer genomic sequences that DAL19 produces six mature mRNA…

Read More »

November 1, 2018

The discovered chimeric protein plays the cohesive role to maintain scallop byssal root structural integrity.

Adhesion is essential for many marine sessile organisms. Unraveling the compositions and assembly of marine bioadheisves is the fundamental to understand their physiological roles. Despite the remarkable diversity of animal bioadhesion, our understanding of this biological process remains limited to only a few animal lineages, leaving the majority of lineages remain enigmatic. Our previous study demonstrated that scallop byssus had distinct protein composition and unusual assembly mechanism apart from mussels. Here a novel protein (Sbp9) was discovered from the key part of the byssus (byssal root), which contains two Calcium Binding Domain (CBD) and 49 tandem Epidermal Growth Factor-Like (EGFL)…

Read More »

October 9, 2018

SMRT Analysis Brochure: Gain a deeper understanding of your sequencing data

The PacBio Platform includes an extensive software portfolio that employs key advantages of SMRT (Single Molecule, Real-Time) Sequencing technology: extraordinarily long reads, highest consensus accuracy, uniform coverage and simultaneous epigenetic characterization. Core elements of our analytical portfolio include SMRT Analysis software, DevNet and SMRT Compatible products.

Read More »

1 2 3 7

Subscribe for blog updates:

Archives