Menu
April 21, 2020  |  

Mogamulizumab Treatment Elicits Autoantibodies Attacking the Skin in Patients with Adult T-Cell Leukemia-Lymphoma.

Purpose: The anti-CCR4 mAb, mogamulizumab, offers therapeutic benefit to patients with adult T-cell leukemia-lymphoma (ATL), but skin-related adverse events (AE) such as erythema multiforme occur frequently. The purpose of this study was to determine the mechanisms by which mogamulizumab causes skin-related AEs in patients with ATL.Experimental Design: We investigated whether autoantibodies were present in patients’ sera using flow cytometry to determine binding to keratinocytes and melanocytes (n = 17), and immunofluorescence analysis of tissue sections. We analyzed the IgM heavy chain repertoire in peripheral blood mononuclear cells before and after mogamulizumab or other chemotherapy by next-generation sequencing (NGS; n = 16).Results: Autoantibodies recognizing human keratinocytes or melanocytes were found in the sera of 6 of 8 patients suffering from mogamulizumab-induced erythema multiforme. In one patient, complement-dependent cytotoxicity (CDC) mediated by autoantibodies against keratinocytes or melanocytes was proportionally related to the severity of the erythema multiforme. The presence of autoantibodies in the epidermis was confirmed in all biopsy specimens of mogamulizumab-induced erythema multiforme (n = 12). Furthermore, colocalization of autoantibodies and C1q, suggesting the activation of CDC, was observed in 67% (8/12). In contrast, no autoantibody or C1q was found in ATL tumor skin lesions (n = 13). Consistent with these findings, NGS demonstrated that IgM germline genes had newly emerged and expanded, resulting in IgM repertoire skewing at the time of erythema multiforme.Conclusions: Mogamulizumab elicits autoantibodies playing an important role in skin-related AEs, possibly associated with regulatory T-cell depletion. This is the first report demonstrating the presence of skin-directed autoantibodies after mogamulizumab treatment. ©2019 American Association for Cancer Research.


April 21, 2020  |  

Antarctic heterotrophic bacterium Hymenobacter nivis P3T displays light-enhanced growth and expresses putative photoactive proteins.

Hymenobacter nivis P3T is a heterotrophic bacterium isolated from Antarctic red snow generated by algal blooms. Despite being non-photosynthetic, H. nivis was dominantly found in the red snow environment that is exposed to high light and UV irradiation, suggesting that this species can flourish under such harsh conditions. In order to further understand the adaptive strategies on the snow surface environment of Antarctica, the genome of H. nivis P3T was sequenced and analyzed, which identified genes putatively encoding for light-reactive proteins such as proteorhodopsin, phytochrome, photolyase and several copies of cryptochromes. Culture-based experiments revealed that H. nivis P3T growth was significantly enhanced under light conditions, while dark conditions had increased extracellular polymeric substances. Furthermore, the expression of several putative light-reactive proteins was determined by proteomic analysis. These results indicate that H. nivis P3T is able to potentially utilize light, which may explain its dominance on the red snow surface environment of Antarctica. ORIGINALITY-SIGNIFICANCE STATEMENT: The role of proteorhodopsin in heterotrophic bacteria is not well-characterized, as only a handful of proteorhodopsin-harbouring isolates were shown to have a light-enhanced phenotype through culture-based experiments to date. This is the first study that demonstrates light-stimulated growth and protein expression evidence of photoactive proteins for a non-marine psychrophile and for a member of the genus Hymenobacter. It is also the first study that provides comprehensive proteome information for this genus. This study presents significant results in understanding the adaptive mechanism of a heterotrophic non-photosynthetic bacterium thriving on the snow surface environment of Antarctica as well as demonstrating the role of light-utilization in promoting growth, possibly through proteorhodopsin. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 19, 2019  |  

Highly efficient CRISPR/Cas9-mediated cloning and functional characterization of gastric cancer-derived Epstein-Barr virus strains.

The Epstein-Barr virus (EBV) is etiologically linked to approximately 10% of gastric cancers, in which viral genomes are maintained as multicopy episomes. EBV-positive gastric cancer cells are incompetent for progeny virus production, making viral DNA cloning extremely difficult. Here we describe a highly efficient strategy for obtaining bacterial artificial chromosome (BAC) clones of EBV episomes by utilizing a CRISPR/Cas9-mediated strand break of the viral genome and subsequent homology-directed repair. EBV strains maintained in two gastric cancer cell lines (SNU719 and YCCEL1) were cloned, and their complete viral genome sequences were determined. Infectious viruses of gastric cancer cell-derived EBVs were reconstituted, and the viruses established stable latent infections in immortalized keratinocytes. While Ras oncoprotein overexpression caused massive vacuolar degeneration and cell death in control keratinocytes, EBV-infected keratinocytes survived in the presence of Ras expression. These results implicate EBV infection in predisposing epithelial cells to malignant transformation by inducing resistance to oncogene-induced cell death.Recent progress in DNA-sequencing technology has accelerated EBV whole-genome sequencing, and the repertoire of sequenced EBV genomes is increasing progressively. Accordingly, the presence of EBV variant strains that may be relevant to EBV-associated diseases has begun to attract interest. Clearly, the determination of additional disease-associated viral genome sequences will facilitate the identification of any disease-specific EBV variants. We found that CRISPR/Cas9-mediated cleavage of EBV episomal DNA enabled the cloning of disease-associated viral strains with unprecedented efficiency. As a proof of concept, two gastric cancer cell-derived EBV strains were cloned, and the infection of epithelial cells with reconstituted viruses provided important clues about the mechanism of EBV-mediated epithelial carcinogenesis. This experimental system should contribute to establishing the relationship between viral genome variation and EBV-associated diseases. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete genome sequence of Marinifilaceae bacterium strain SPP2, isolated from the Antarctic marine sediment

Marinifilaceae bacterium strain SPP2 is a Gram-negative facultative anaerobe, isolated from the Antarctic marine sediment. Here, we present the complete genome sequence of Marinifilaceae bacterium strain SPP2, which consists of 5,718,991 bp with a G + C content of 35.99%. The genome data provides insights of microbial evolution and adaption in the Antarctic marine ecosystem.


July 7, 2019  |  

Hyper-eccentric structural genes in the mitochondrial genome of the algal parasite Hemistasia phaeocysticola.

Diplonemid mitochondria are considered to have very eccentric structural genes. Coding regions of individual diplonemid mitochondrial genes are fragmented into small pieces and found on different circular DNAs. Short RNAs transcribed from each DNA molecule mature through a unique RNA maturation process involving assembly and three types of RNA editing (i.e., U insertion and A-to-I & C-to-U substitutions), although the molecular mechanism(s) of RNA maturation and the evolutionary history of these eccentric structural genes still remain to be understood. Since the gene fragmentation pattern is generally conserved among the diplonemid species studied to date, it was considered that their structural complexity has plateaued and further gene fragmentation could not occur. Here, we show the mitochondrial gene structure of Hemistasia phaeocysticola, which was recently identified as a member of a novel lineage in diplonemids, by comparison of the mitochondrial DNA sequences with cDNA sequences synthesized from mature mRNA. The genes of H. phaeocysticola are fragmented much more finely than those of other diplonemids studied to date. Furthermore, in addition to all known types of RNA editing, it is suggested that a novel processing step (i.e., secondary RNA insertion) is involved in the RNA maturation in the mitochondria of H. phaeocysticola Our findings demonstrate the tremendous plasticity of mitochondrial gene structures.© The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Complete genome sequencing and comparative genomic analysis of the thermotolerant acetic acid bacterium, Acetobacter pasteurianus SKU1108, provide a new insight into thermotolerance.

Acetobacter pasteurianus SKU1108 is a typical thermotolerant acetic acid bacterium. In this study, the complete genome sequence of the SKU1108 strain was elucidated, and information on genomic modifications due to the thermal adaptation of SKU1108 was updated. In order to obtain a clearer understanding of the genetic background responsible for thermotolerance, the SKU1108 genome was compared with those of two closely related complete genome strains, thermotolerant A. pasteurianus 386B and mesophilic A. pasteurianus NBRC 3283. All 24 “thermotolerant genes” required for growth at higher temperatures in the thermotolerant Acetobacter tropicalis SKU1100 strain were conserved in all three strains. However, these thermotolerant genes accumulated amino acid mutations. Some biased mutations, particularly those that occurred in xanthine dehydrogenase XdhA, may be related to thermotolerance. By aligning whole genome sequences, we identified ten SKU1108 strain-specific regions, three of which were conserved in the genomes of the two thermotolerant A. pasteurianus strains. One of the regions contained a unique paralog of the thermotolerant gene xdhA, which may also be responsible for conferring thermotolerance. Thus, comparative genomics of complete genome sequences may provide novel insights into the phenotypes of these thermotolerant strains.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.