X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
August 1, 2018

The Florida manatee (Trichechus manatus latirostris) T cell receptor loci exhibit V subgroup synteny and chain-specific evolution.

The Florida manatee (Trichechus manatus latirostris) has limited diversity in the immunoglobulin heavy chain. We therefore investigated the antigen receptor loci of the other arm of the adaptive immune system: the T cell receptor. Manatees are the first species from Afrotheria, a basal eutherian superorder, to have an in-depth characterization of all T cell receptor loci. By annotating the genome and expressed transcripts, we found that each chain has distinct features that correlates to their individual functions. The genomic organization also plays a role in modulating sequence conservation between species. There were extensive V subgroup synteny blocks in the TRA…

Read More »

April 1, 2018

Somatic hypermutation of T cell receptor a chain contributes to selection in nurse shark thymus.

Since the discovery of the T cell receptor (TcR), immunologists have assigned somatic hypermutation (SHM) as a mechanism employed solely by B cells to diversify their antigen receptors. Remarkably, we found SHM acting in the thymus on a chain locus of shark TcR. SHM in developing shark T cells likely is catalyzed by activation-induced cytidine deaminase (AID) and results in both point and tandem mutations that accumulate non-conservative amino acid replacements within complementarity-determining regions (CDRs). Mutation frequency at TcRa was as high as that seen at B cell receptor loci (BcR) in sharks and mammals, and the mechanism of SHM…

Read More »

June 26, 2017

IG and TR single chain fragment variable (scFv) sequence analysis: a new advanced functionality of IMGT/V-QUEST and IMGT/HighV-QUEST.

IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of the antigen receptors, and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. Immunoglobulins (IG) or antibodies and T cell receptors (TR) are managed and described in the IMGT® databases and tools at the level of receptor, chain and domain. The analysis of the IG and TR variable (V) domain rearranged nucleotide sequences is performed by IMGT/V-QUEST (online since 1997, 50 sequences per batch) and, for…

Read More »

February 14, 2017

T-cell receptor profiling using PacBio sequencing of SMARTer libraries

T-cells play a central part in the immune response in humans and related species. T-cell receptors (TCRs), heterodimers located on the T-cell surface, specifically bind foreign antigens displayed on the MHC complex of antigen-presenting cells. The wide spectrum of potential antigens is addressed by the diversity of TCRs created by V(D)J recombination. Profiling this repertoire of TCRs could be useful from, but not limited to, diagnosis, monitoring response to treatments, and examining T-cell development and diversification.

Read More »

February 1, 2017

Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response.

Patients with leukemia who receive a T cell-depleted allogeneic stem cell graft followed by postponed donor lymphocyte infusion (DLI) can experience graft-versus-leukemia (GVL) reactivity, with a lower risk of graft-versus-host disease (GVHD). Here, we have investigated the magnitude, diversity, and specificity of alloreactive CD8 T cells in patients who developed GVL reactivity after DLI in the absence or presence of GVHD. We observed a lower magnitude and diversity of CD8 T cells for minor histocompatibility antigens (MiHAs) in patients with selective GVL reactivity without GVHD. Furthermore, we demonstrated that MiHA-specific T cell clones from patients with selective GVL reactivity showed…

Read More »

October 20, 2016

ASHG PacBio Workshop: SMRT Sequencing as a translational research tool to investigate germline, somatic and infectious diseases

Melissa Laird Smith discussed how the Icahn School of Medicine at Mount Sinai uses long-read sequencing for translational research. She gave several examples of targeted sequencing projects run on the Sequel System including CYP2D6, phased mutations of GLA in Fabry's disease, structural variation breakpoint validation in glioblastoma, and full-length immune profiling of TCR sequences.

Read More »

May 1, 2016

TCR sequencing of single cells reactive to DQ2.5-glia-a2 and DQ2.5-glia-?2 reveals clonal expansion and epitope-specific V-gene usage.

CD4+ T cells recognizing dietary gluten epitopes in the context of disease-associated human leukocyte antigen (HLA)-DQ2 or HLA-DQ8 molecules are the key players in celiac disease pathogenesis. Here, we conducted a large-scale single-cell paired T-cell receptor (TCR) sequencing study to characterize the TCR repertoire for two homologous immunodominant gluten epitopes, DQ2.5-glia-a2 and DQ2.5-glia-?2, in blood of celiac disease patients after oral gluten challenge. Despite sequence similarity of the epitopes, the TCR repertoires are unique but shared several overall features. We demonstrate that clonally expanded T cells dominate the T-cell responses to both epitopes. Moreover, we find V-gene bias of TRAV26,…

Read More »

May 1, 2016

Genomic organization of the zebrafish (Danio rerio) T cell receptor alpha/delta locus and analysis of expressed products.

In testing the hypothesis that all jawed vertebrate classes employ immunoglobulin heavy chain V (IgHV) gene segments in their T cell receptor (TCR)d encoding loci, we found that some basic characterization was required of zebrafish TCRd. We began by annotating and characterizing the TCRa/d locus of Danio rerio based on the most recent genome assembly, GRCz10. We identified a total of 141 theoretically functional V segments which we grouped into 41 families based upon 70 % nucleotide identity. This number represents the second greatest count of apparently functional V genes thus far described in an antigen receptor locus with the exception…

Read More »

September 25, 2015

Immunology Brochure: Invaluable insights into immunology

In order to understand the molecular mechanisms governing the outcomes of disease, health and survival, immunologists have to characterize exceptionally complex genomic regions, like major histocompatibility complex (MHC), killer cell immune receptors (KIR), and the B and T-cell immune repertoire. Single Molecule, Real-Time (SMRT) Sequencing delivers the long read lengths, uniform coverage and high accuracy necessary to comprehensively and confidently resolve these immune sub-genomic regions. The granularity of data generated by PacBio® reads provides new access to imputation-free characterization of genes and haplotypes for invaluable genomic insights to advance disease association and evolutionary research.

Read More »

September 17, 2015

Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats.

HIV infection has been reported to alter cellular gene activity, but published studies have commonly assayed transformed cell lines and lab-adapted HIV strains, yielding inconsistent results. Here we carried out a deep RNA-Seq analysis of primary human T cells infected with the low passage HIV isolate HIV89.6.Seventeen percent of cellular genes showed altered activity 48 h after infection. In a meta-analysis including four other studies, our data differed from studies of HIV infection in cell lines but showed more parallels with infections of primary cells. We found a global trend toward retention of introns after infection, suggestive of a novel…

Read More »

Subscribe for blog updates:

Archives