July 7, 2019  |  

Complete genome sequence of the sugar cane endophyte Pseudomonas aurantiaca PB-St2, a disease-suppressive bacterium with antifungal activity toward the plant pathogen Colletotrichum falcatum.

The endophytic bacterium Pseudomonas aurantiaca PB-St2 exhibits antifungal activity and represents a biocontrol agent to suppress red rot disease of sugar cane. Here, we report the completely sequenced 6.6-Mb genome of P. aurantiaca PB-St2. The sequence contains a repertoire of biosynthetic genes for secondary metabolites that putatively contribute to its antagonistic activity and its plant-microbe interactions.


July 7, 2019  |  

Complete genome sequence of Leifsonia xyli subsp. cynodontis strain DSM46306, a gram-positive bacterial pathogen of grasses.

We announce the complete genome sequence of Leifsonia xyli subsp. cynodontis, a vascular pathogen of Bermuda grass. The species also comprises Leifsonia xyli subsp. xyli, a sugarcane pathogen. Since these two subspecies have genome sequences available, a comparative analysis will contribute to our understanding of the differences in their biology and host specificity.


July 7, 2019  |  

BAC-pool sequencing and assembly of 19 Mb of the complex sugarcane genome.

Sequencing plant genomes are often challenging because of their complex architecture and high content of repetitive sequences. Sugarcane has one of the most complex genomes. It is highly polyploid, preserves intact homeologous chromosomes from its parental species and contains >55% repetitive sequences. Although bacterial artificial chromosome (BAC) libraries have emerged as an alternative for accessing the sugarcane genome, sequencing individual clones is laborious and expensive. Here, we present a strategy for sequencing and assembly reads produced from the DNA of pooled BAC clones. A set of 178 BAC clones, randomly sampled from the SP80-3280 sugarcane BAC library, was pooled and sequenced using the Illumina HiSeq2000 and PacBio platforms. A hybrid assembly strategy was used to generate 2,451 scaffolds comprising 19.2 MB of assembled genome sequence. Scaffolds of =20 Kb corresponded to 80% of the assembled sequences, and the full sequences of forty BACs were recovered in one or two contigs. Alignment of the BAC scaffolds with the chromosome sequences of sorghum showed a high degree of collinearity and gene order. The alignment of the BAC scaffolds to the 10 sorghum chromosomes suggests that the genome of the SP80-3280 sugarcane variety is ~19% contracted in relation to the sorghum genome. In conclusion, our data show that sequencing pools composed of high numbers of BAC clones may help to construct a reference scaffold map of the sugarcane genome.


July 7, 2019  |  

The two chromosomes of the mitochondrial genome of a sugarcane cultivar: assembly and recombination analysis using long PacBio reads.

Sugarcane accounts for a large portion of the worlds sugar production. Modern commercial cultivars are complex hybrids of S. officinarum and several other Saccharum species. Historical records identify New Guinea as the origin of S. officinarum and that a small number of plants originating from there were used to generate all modern commercial cultivars. The mitochondrial genome can be a useful way to identify the maternal origin of commercial cultivars. We have used the PacBio RSII to sequence and assemble the mitochondrial genome of a South East Asian commercial cultivar, known as Khon Kaen 3. The long read length of this sequencing technology allowed for the mitochondrial genome to be assembled into two distinct circular chromosomes with all repeat sequences spanned by individual reads. Comparison of five commercial hybrids, two S. officinarum and one S. spontaneum to our assembly reveals no structural rearrangements between our assembly, the commercial hybrids and an S. officinarum from New Guinea. The S. spontaneum, from India, and one sample of S. officinarum (unknown origin) are substantially rearranged and have a large number of homozygous variants. This supports the record that S. officinarum plants from New Guinea are the maternal source of all modern commercial hybrids.


July 7, 2019  |  

The challenge of analyzing the sugarcane genome.

Reference genome sequences have become key platforms for genetics and breeding of the major crop species. Sugarcane is probably the largest crop produced in the world (in weight of crop harvested) but lacks a reference genome sequence. Sugarcane has one of the most complex genomes in crop plants due to the extreme level of polyploidy. The genome of modern sugarcane hybrids includes sub-genomes from two progenitors Saccharum officinarum and S. spontaneum with some chromosomes resulting from recombination between these sub-genomes. Advancing DNA sequencing technologies and strategies for genome assembly are making the sugarcane genome more tractable. Advances in long read sequencing have allowed the generation of a more complete set of sugarcane gene transcripts. This is supporting transcript profiling in genetic research. The progenitor genomes are being sequenced. A monoploid coverage of the hybrid genome has been obtained by sequencing BAC clones that cover the gene space of the closely related sorghum genome. The complete polyploid genome is now being sequenced and assembled. The emerging genome will allow comparison of related genomes and increase understanding of the functioning of this polyploidy system. Sugarcane breeding for traditional sugar and new energy and biomaterial uses will be enhanced by the availability of these genomic resources.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.