Menu
August 19, 2021  |  Human genetics research

Whitepaper — Structural variation in the human genome

Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.


August 19, 2021  |  Sample + library preparation

Product note — SMRTbell express template prep 2.0 for large-insert libraries

The SMRTbell Express Template Prep Kit 2.0 provides a streamlined, single-tube reaction strategy to generate SMRTbell libraries from 500 bp to >50 kb insert size targets to support large-insert genomic libraries, multiplexed microbial genomes and amplicon sequencing. With this new formulation, we have increased both the yield and efficiency of SMRTbell library preparation for SMRT Sequencing while further minimizing handling-induced DNA damage to retain the integrity of genomic DNA (gDNA). This product note highlights the key benefits, performance, and resources available for supporting de novo genome sequencing and structural variant detection projects. Our large-insert gDNA protocol has been streamlined to support SMRTbell library generation in only 4 hours, making complete construction in less than a day. This significantly reduces time to results for generating high-quality genome assemblies to fully characterize SNPs and structural variants. Additional key benefits of this template preparation kit and updated protocol include library generation with as little as 2 to 3 µg input gDNA and flexibility to accommodate and adjust input amount in accordance with the extracted gDNA quality.


August 19, 2021  |  

Product note — Fast, high-resolution DNA sizing with the fragment analyzer system

The Agilent 5200, 5300, and 5400 Fragment Analyzer instruments are fast, high-resolution benchtop capillary electrophoresis (CE) platforms that utilize proprietary markers to accurately size fragments ranging from 10 to 50 kb. This platform allows important DNA quality checkpoints to be completed in one hour for de novo large-genome sequencing projects and other PacBio applications leveraging multi-kilobase read lengths. The instrument can be used in place of time-consuming QC steps involving pulsed field gel electrophoresis (PFGE), saving time by avoiding multiple overnight gel runs when preparing large-insert SMRTbell libraries. Alternative DNA-sizing instruments cannot accurately resolve large DNA fragments in this range.


August 19, 2021  |  Products, procedures + protocols

Application note — Considerations for using the low and ultra-low DNA input workflows for whole genome sequencing

As the foundation for scientific discoveries in genetic diversity, sequencing data must be accurate and complete. With highly accurate long-read sequencing, or HiFi sequencing, there is no longer a compromise between read length and accuracy. HiFi sequencing enables some of the highest quality de novo genome assemblies available today as well as comprehensive variant detection in human samples. PacBio HiFi libraries constructed using our standard library workflows require at least 3 µg of DNA input per 1 Gb of genome length, or ~10 µg for a human sample. For some samples it is not possible to extract this amount of DNA for sequencing. For samples where between 300 ng and 3 ug of DNA is available, the Low DNA Input Workflow enables users to generate high-quality genome assemblies of small-bodied organisms. For samples where even less DNA is available (as low as 5 ng), the amplification-based Ultra-Low DNA Input Workflow is available.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.