fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

The Genome of C57BL/6J “Eve”, the Mother of the Laboratory Mouse Genome Reference Strain.

Isogenic laboratory mouse strains enhance reproducibility because individual animals are genetically identical. For the most widely used isogenic strain, C57BL/6, there exists a wealth of genetic, phenotypic, and genomic data, including a high-quality reference genome (GRCm38.p6). Now 20 years after the first release of the mouse reference genome, C57BL/6J mice are at least 26 inbreeding generations removed from GRCm38 and the strain is now maintained with periodic reintroduction of cryorecovered mice derived from a single breeder pair, aptly named Adam and Eve. To provide an update to the mouse reference genome that more accurately represents the genome of today’s C57BL/6J…

Read More »

Tuesday, April 21, 2020

Genome analyses for the Tohoku Medical Megabank Project towards establishment of personalized healthcare.

Personalized healthcare (PHC) based on an individual’s genetic make-up is one of the most advanced, yet feasible, forms of medical care. The Tohoku Medical Megabank (TMM) Project aims to combine population genomics, medical genetics and prospective cohort studies to develop a critical infrastructure for the establishment of PHC. To date, a TMM CommCohort (adult general population) and a TMM BirThree Cohort (birth+three-generation families) have conducted recruitments and baseline surveys. Genome analyses as part of the TMM Project will aid in the development of a high-fidelity whole-genome Japanese reference panel, in designing custom single-nucleotide polymorphism (SNP) arrays specific to Japanese, and…

Read More »

Tuesday, April 21, 2020

TSD: A Computational Tool To Study the Complex Structural Variants Using PacBio Targeted Sequencing Data.

PacBio sequencing is a powerful approach to study DNA or RNA sequences in a longer scope. It is especially useful in exploring the complex structural variants generated by random integration or multiple rearrangement of endogenous or exogenous sequences. Here, we present a tool, TSD, for complex structural variant discovery using PacBio targeted sequencing data. It allows researchers to identify and visualize the genomic structures of targeted sequences by unlimited splitting, alignment and assembly of long PacBio reads. Application to the sequencing data derived from an HBV integrated human cell line(PLC/PRF/5) indicated that TSD could recover the full profile of HBV…

Read More »

Tuesday, April 21, 2020

Mobilization of Pack-CACTA transposons in Arabidopsis suggests the mechanism of gene shuffling.

Pack-TYPE transposons are a unique class of potentially mobile non-autonomous elements that can capture, merge and relocate fragments of chromosomal DNA. It has been postulated that their activity accelerates the evolution of host genes. However, this important presumption is based only on the sequences of currently inactive Pack-TYPE transposons and the acquisition of chromosomal DNA has not been recorded in real time. Analysing the DNA copy number variation in hypomethylated Arabidopsis lines, we have now for the first time witnessed the mobilization of novel Pack-TYPE elements related to the CACTA transposon family, over several plant generations. Remarkably, these elements can…

Read More »

Tuesday, April 21, 2020

Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2.

DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to ~1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during…

Read More »

Tuesday, April 21, 2020

The role of genomic structural variation in the genetic improvement of polyploid crops

Many of our major crop species are polyploids, containing more than one genome or set of chromosomes. Polyploid crops present unique challenges, including difficulties in genome assembly, in discriminating between multiple gene and sequence copies, and in genetic mapping, hindering use of genomic data for genetics and breeding. Polyploid genomes may also be more prone to containing structural variation, such as loss of gene copies or sequences (presence–absence variation) and the presence of genes or sequences in multiple copies (copy-number variation). Although the two main types of genomic structural variation commonly identified are presence–absence variation and copy-number variation, we propose…

Read More »

Tuesday, April 21, 2020

Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease.

Noncoding repeat expansions cause various neuromuscular diseases, including myotonic dystrophies, fragile X tremor/ataxia syndrome, some spinocerebellar ataxias, amyotrophic lateral sclerosis and benign adult familial myoclonic epilepsies. Inspired by the striking similarities in the clinical and neuroimaging findings between neuronal intranuclear inclusion disease (NIID) and fragile X tremor/ataxia syndrome caused by noncoding CGG repeat expansions in FMR1, we directly searched for repeat expansion mutations and identified noncoding CGG repeat expansions in NBPF19 (NOTCH2NLC) as the causative mutations for NIID. Further prompted by the similarities in the clinical and neuroimaging findings with NIID, we identified similar noncoding CGG repeat expansions in two…

Read More »

Tuesday, April 21, 2020

Informatics for PacBio Long Reads.

In this article, we review the development of a wide variety of bioinformatics software implementing state-of-the-art algorithms since the introduction of SMRT sequencing technology into the field. We focus on the three major categories of development: read mapping (aligning to reference genomes), de novo assembly, and detection of structural variants. The long SMRT reads benefit all the applications, but they are achievable only through considering the nature of the long reads technology properly.

Read More »

Tuesday, April 21, 2020

Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome.

The DNA sequencing technologies in use today produce either highly accurate short reads or less-accurate long reads. We report the optimization of circular consensus sequencing (CCS) to improve the accuracy of single-molecule real-time (SMRT) sequencing (PacBio) and generate highly accurate (99.8%) long high-fidelity (HiFi) reads with an average length of 13.5 kilobases (kb). We applied our approach to sequence the well-characterized human HG002/NA24385 genome and obtained precision and recall rates of at least 99.91% for single-nucleotide variants (SNVs), 95.98% for insertions and deletions <50 bp (indels) and 95.99% for structural variants. Our CCS method matches or exceeds the ability of…

Read More »

Tuesday, April 21, 2020

Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease.

Current diagnostic testing for genetic disorders involves serial use of specialized assays spanning multiple technologies. In principle, genome sequencing (GS) can detect all genomic pathogenic variant types on a single platform. Here we evaluate copy-number variant (CNV) calling as part of a clinically accredited GS test.We performed analytical validation of CNV calling on 17 reference samples, compared the sensitivity of GS-based variants with those from a clinical microarray, and set a bound on precision using orthogonal technologies. We developed a protocol for family-based analysis of GS-based CNV calls, and deployed this across a clinical cohort of 79 rare and undiagnosed…

Read More »

Tuesday, April 21, 2020

Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement.

Maize is one of the most important crops globally, and it shows remarkable genetic diversity. Knowledge of this diversity could help in crop improvement; however, gold-standard genomes have been elucidated only for modern temperate varieties. Here, we present a high-quality reference genome (contig N50 of 15.78?megabases) of the maize small-kernel inbred line, which is derived from a tropical landrace. Using haplotype maps derived from B73, Mo17 and SK, we identified 80,614 polymorphic structural variants across 521 diverse lines. Approximately 22% of these variants could not be detected by traditional single-nucleotide-polymorphism-based approaches, and some of them could affect gene expression and…

Read More »

Tuesday, April 21, 2020

Evaluation of the performance of copy number variant prediction tools for the detection of deletions from whole genome sequencing data.

Whole genome sequencing (WGS) has increased in popularity and decreased in cost over the past decade, rendering this approach as a viable and sensitive method for variant detection. In addition to its utility for single nucleotide variant detection, WGS data has the potential to detect Copy Number Variants (CNV) to fine resolution. Many CNV detection software packages have been developed exploiting four main types of data: read pair, split read, read depth, and assembly based methods. The aim of this study was to evaluate the efficiency of each of these main approaches in detecting germline deletions.WGS data and high confidence…

Read More »

Tuesday, April 21, 2020

Development of CRISPR-Cas systems for genome editing and beyond

The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-Cas systems for genome editing has transformed the way life science research is conducted and holds enormous potential for the treatment of disease as well as for many aspects of biotech- nology. Here, I provide a personal perspective on the development of CRISPR-Cas9 for genome editing within the broader context of the field and discuss our work to discover novel Cas effectors and develop them into additional molecular tools. The initial demonstra- tion of Cas9-mediated genome editing launched the development of many other technologies, enabled new lines of biological inquiry, and motivated…

Read More »

Tuesday, April 21, 2020

Identification of a Xist silencing domain by Tiling CRISPR.

Despite essential roles played by long noncoding RNAs (lncRNAs) in development and disease, methods to determine lncRNA cis-elements are lacking. Here, we developed a screening method named “Tiling CRISPR” to identify lncRNA functional domains. Using this approach, we identified Xist A-Repeats as the silencing domain, an observation in agreement with published work, suggesting Tiling CRISPR feasibility. Mechanistic analysis suggested a novel function for Xist A-repeats in promoting Xist transcription. Overall, our method allows mapping of lncRNA functional domains in an unbiased and potentially high-throughput manner to facilitate the understanding of lncRNA functions.

Read More »

Tuesday, April 21, 2020

Accurate high throughput alignment via line sweep-based seed processing.

Accurate and fast aligners are required to handle the steadily increasing volume of sequencing data. Here we present an approach allowing performant alignments of short reads (Illumina) as well as long reads (Pacific Bioscience, Ultralong Oxford Nanopore), while achieving high accuracy, based on a universal three-stage scheme. It is also suitable for the discovery of insertions and deletions that originate from structural variants. We comprehensively compare our approach to other state-of-the-art aligners in order to confirm its performance with respect to accuracy and runtime. As part of our algorithmic scheme, we introduce two line sweep-based techniques called “strip of consideration”…

Read More »

1 2 3 4 5 7

Subscribe for blog updates:

Archives

Search

Categories

Press Release

PacBio Grants Equity Incentive Award to New Employee

Friday, November 19, 2021

Stay
Current

Visit our blog »