June 1, 2021  |  

New advances in SMRT Sequencing facilitate multiplexing for de novo and structural variant studies

The latest advancements in Sequel II SMRT Sequencing have increased average read lengths up to 50% compared to Sequel II chemistry 1.0 which allows multiplexing of 2-3 small organisms (<500 Mb) such as insects and worms for producing reference quality assemblies, calling structural variants for up to 2 samples with ~3 Gb genomes, analysis of 48 microbial genomes, and up to 8 communities for metagenomic profiling in a single SMRT Cell 8M. With the improved processivity of the new Sequel II sequencing polymerase, more SMRTbell molecules reach rolling circle mode resulting in longer overall read lengths, thus allowing efficient detection of barcodes (up to 80%) in the SMRTbell templates. Multiplexing of genomes larger than microbial organisms is now achievable. In collaboration with the Wellcome Sanger Institute, we have developed a workflow for multiplexing two individual Anopheles coluzzii using as low as 150 ng genomic DNA per individual. The resulting assemblies had high contiguity (contig N50s over 3 Mb) and completeness (>98% of conserved genes) for both individuals. For microbial multiplexing, we multiplexed 48 microbes with varying complexities and sizes ranging 1.6-8.0 Mb in single SMRT Cell 8M. Using a new end-to-end analysis (Microbial Assembly Analysis, SMRT Link 8.0), assemblies resulted in complete circularized genomes (>200-fold coverage) and efficient detection of >3-200 kb plasmids. Finally, the long read lengths (>90 kb) allows detection of barcodes in large insert SMRTbell templates (>15 kb) thus facilitating multiplex of two human samples in 1 SMRT Cell 8M for detecting SVs, Indels and CNVs. Here, we present results and describe workflows for multiplexing samples for specific applications for SMRT Sequencing.

April 21, 2020  |  

Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads.

The sequence and assembly of human genomes using long-read sequencing technologies has revolutionized our understanding of structural variation and genome organization. We compared the accuracy, continuity, and gene annotation of genome assemblies generated from either high-fidelity (HiFi) or continuous long-read (CLR) datasets from the same complete hydatidiform mole human genome. We find that the HiFi sequence data assemble an additional 10% of duplicated regions and more accurately represent the structure of tandem repeats, as validated with orthogonal analyses. As a result, an additional 5 Mbp of pericentromeric sequences are recovered in the HiFi assembly, resulting in a 2.5-fold increase in the NG50 within 1 Mbp of the centromere (HiFi 480.6 kbp, CLR 191.5 kbp). Additionally, the HiFi genome assembly was generated in significantly less time with fewer computational resources than the CLR assembly. Although the HiFi assembly has significantly improved continuity and accuracy in many complex regions of the genome, it still falls short of the assembly of centromeric DNA and the largest regions of segmental duplication using existing assemblers. Despite these shortcomings, our results suggest that HiFi may be the most effective standalone technology for de novo assembly of human genomes. © 2019 John Wiley & Sons Ltd/University College London.

April 21, 2020  |  

Haplotype-Resolved Cattle Genomes Provide Insights Into Structural Variation and Adaptation

We present high quality, phased genome assemblies representative of taurine and indicine cattle, subspecies that differ markedly in productivity-related traits and environmental adaptation. We report a new haplotype-aware scaffolding and polishing pipeline using contigs generated by the trio binning method to produce haplotype-resolved, chromosome-level genome assemblies of Angus (taurine) and Brahman (indicine) cattle breeds. These assemblies were used to identify structural and copy number variants that differentiate the subspecies and we found variant detection was sensitive to the specific reference genome chosen. Six gene families with immune related functions are expanded in the indicine lineage. Assembly of the genomes of both subspecies from a single individual enabled transcripts to be phased to detect allele-specific expression, and to study genome-wide selective sweeps. An indicus-specific extra copy of fatty acid desaturase is under positive selection and may contribute to indicine adaptation to heat and drought.

April 21, 2020  |  

A robust benchmark for germline structural variant detection

New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution, and comprehensiveness. Translating these methods to routine research and clinical practice requires robust benchmark sets. We developed the first benchmark set for identification of both false negative and false positive germline SVs, which complements recent efforts emphasizing increasingly comprehensive characterization of SVs. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle (GIAB) Consortium integrated 19 sequence-resolved variant calling methods, both alignment- and de novo assembly-based, from short-, linked-, and long-read sequencing, as well as optical and electronic mapping. The final benchmark set contains 12745 isolated, sequence-resolved insertion and deletion calls =50 base pairs (bp) discovered by at least 2 technologies or 5 callsets, genotyped as heterozygous or homozygous variants by long reads. The Tier 1 benchmark regions, for which any extra calls are putative false positives, cover 2.66 Gbp and 9641 SVs supported by at least one diploid assembly. Support for SVs was assessed using svviz with short-, linked-, and long-read sequence data. In general, there was strong support from multiple technologies for the benchmark SVs, with 90 % of the Tier 1 SVs having support in reads from more than one technology. The Mendelian genotype error rate was 0.3 %, and genotype concordance with manual curation was >98.7 %. We demonstrate the utility of the benchmark set by showing it reliably identifies both false negatives and false positives in high-quality SV callsets from short-, linked-, and long-read sequencing and optical mapping.

April 21, 2020  |  

Large Fragment Deletions Induced by Cas9 Cleavage While Not in BEs System in Rabbit

CRISPR-Cas9 and BEs system are poised to become the gene editing tool of choice in clinical contexts, however large fragment deletion was found in Cas9-mediated mutation cells without animal level validation. By analyzing 16 gene-edited rabbit lines (including 112 rabbits) generated using SpCas9, BEs, xCas9 and xCas9-BEs with long-range PCR genotyping and long-read sequencing by PacBio platform, we show that extending thousands of bases fragment deletions in single-guide RNA/Cas9 and xCas9 system mutation rabbit, but few large deletions were found in BEs-induced mutation rabbits. We firstly validated that no large fragment deletion induced by BEs system at animal level, suggesting that BE systems can be beneficial tools for the further development of highly accurate and secure gene therapy for the clinical treatment of human genetic disorders

April 21, 2020  |  

Next-Generation Sequencing and Emerging Technologies.

Genetic sequencing technologies are evolving at a rapid pace with major implications for research and clinical practice. In this review, the authors provide an updated overview of next-generation sequencing (NGS) and emerging methodologies. NGS has tremendously improved sequencing output while being more time and cost-efficient in comparison to Sanger sequencing. The authors describe short-read sequencing approaches, such as sequencing by synthesis, ion semiconductor sequencing, and nanoball sequencing. Third-generation long-read sequencing now promises to overcome many of the limitations of short-read sequencing, such as the ability to reliably resolve repeat sequences and large genomic rearrangements. By combining complementary methods with massively parallel DNA sequencing, a greater insight into the biological context of disease mechanisms is now possible. Emerging methodologies, such as advances in nanopore technology, in situ nucleic acid sequencing, and microscopy-based sequencing, will continue the rapid evolution of this area. These new technologies hold many potential applications for hematological disorders, with the promise of precision and personalized medical care in the future.Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

April 21, 2020  |  

SyRI: identification of syntenic and rearranged regions from whole-genome assemblies

We present SyRI, an efficient tool for genome-wide identification of structural rearrangements (SR) from genome graphs, which are built up from pair-wise whole-genome alignments. Instead of searching for differences, SyRI starts by finding all co-linear regions between the genomes. As all remaining regions are SRs by definition, they can be classified as inversions, translocations, or duplications based on their positions in convoluted networks of repetitive alignments. Finally, SyRI reports local variations like SNPs and indels within syntenic and rearranged regions. We show SyRItextquoterights broad applicability to multiple species and genetically validate the presence of ~100 translocations identified in Arabidopsis.

April 21, 2020  |  

Centromeric Satellite DNAs: Hidden Sequence Variation in the Human Population.

The central goal of medical genomics is to understand the inherited basis of sequence variation that underlies human physiology, evolution, and disease. Functional association studies currently ignore millions of bases that span each centromeric region and acrocentric short arm. These regions are enriched in long arrays of tandem repeats, or satellite DNAs, that are known to vary extensively in copy number and repeat structure in the human population. Satellite sequence variation in the human genome is often so large that it is detected cytogenetically, yet due to the lack of a reference assembly and informatics tools to measure this variability, contemporary high-resolution disease association studies are unable to detect causal variants in these regions. Nevertheless, recently uncovered associations between satellite DNA variation and human disease support that these regions present a substantial and biologically important fraction of human sequence variation. Therefore, there is a pressing and unmet need to detect and incorporate this uncharacterized sequence variation into broad studies of human evolution and medical genomics. Here I discuss the current knowledge of satellite DNA variation in the human genome, focusing on centromeric satellites and their potential implications for disease.

April 21, 2020  |  

Uncovering Missing Heritability in Rare Diseases.

The problem of ‘missing heritability’ affects both common and rare diseases hindering: discovery, diagnosis, and patient care. The ‘missing heritability’ concept has been mainly associated with common and complex diseases where promising modern technological advances, like genome-wide association studies (GWAS), were unable to uncover the complete genetic mechanism of the disease/trait. Although rare diseases (RDs) have low prevalence individually, collectively they are common. Furthermore, multi-level genetic and phenotypic complexity when combined with the individual rarity of these conditions poses an important challenge in the quest to identify causative genetic changes in RD patients. In recent years, high throughput sequencing has accelerated discovery and diagnosis in RDs. However, despite the several-fold increase (from ~10% using traditional to ~40% using genome-wide genetic testing) in finding genetic causes of these diseases in RD patients, as is the case in common diseases-the majority of RDs are also facing the ‘missing heritability’ problem. This review outlines the key role of high throughput sequencing in uncovering genetics behind RDs, with a particular focus on genome sequencing. We review current advances and challenges of sequencing technologies, bioinformatics approaches, and resources.

April 21, 2020  |  

Critical length in long-read resequencing

Long-read sequencing has substantial advantages for structural variant discovery and phasing of vari- ants compared to short-read technologies, but the required and optimal read length has not been as- sessed. In this work, we used long reads simulated from human genomes and evaluated structural vari- ant discovery and variant phasing using current best practicebioinformaticsmethods.Wedeterminedthatoptimal discovery of structural variants from human genomes can be obtained with reads of minimally 20 kb. Haplotyping variants across genes only reaches its optimum from reads of 100 kb. These findings are important for the design of future long-read sequenc- ing projects.

April 21, 2020  |  

Profiling the genome-wide landscape of tandem repeat expansions.

Tandem repeat (TR) expansions have been implicated in dozens of genetic diseases, including Huntington’s Disease, Fragile X Syndrome, and hereditary ataxias. Furthermore, TRs have recently been implicated in a range of complex traits, including gene expression and cancer risk. While the human genome harbors hundreds of thousands of TRs, analysis of TR expansions has been mainly limited to known pathogenic loci. A major challenge is that expanded repeats are beyond the read length of most next-generation sequencing (NGS) datasets and are not profiled by existing genome-wide tools. We present GangSTR, a novel algorithm for genome-wide genotyping of both short and expanded TRs. GangSTR extracts information from paired-end reads into a unified model to estimate maximum likelihood TR lengths. We validate GangSTR on real and simulated data and show that GangSTR outperforms alternative methods in both accuracy and speed. We apply GangSTR to a deeply sequenced trio to profile the landscape of TR expansions in a healthy family and validate novel expansions using orthogonal technologies. Our analysis reveals that healthy individuals harbor dozens of long TR alleles not captured by current genome-wide methods. GangSTR will likely enable discovery of novel disease-associated variants not currently accessible from NGS. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.

April 21, 2020  |  

The alternative reality of plant mitochondrial DNA: One ring does not rule them all.

Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms.

April 21, 2020  |  

Genomic inversions and GOLGA core duplicons underlie disease instability at the 15q25 locus.

Human chromosome 15q25 is involved in several disease-associated structural rearrangements, including microdeletions and chromosomal markers with inverted duplications. Using comparative fluorescence in situ hybridization, strand-sequencing, single-molecule, real-time sequencing and Bionano optical mapping analyses, we investigated the organization of the 15q25 region in human and nonhuman primates. We found that two independent inversions occurred in this region after the fission event that gave rise to phylogenetic chromosomes XIV and XV in humans and great apes. One of these inversions is still polymorphic in the human population today and may confer differential susceptibility to 15q25 microdeletions and inverted duplications. The inversion breakpoints map within segmental duplications containing core duplicons of the GOLGA gene family and correspond to the site of an ancestral centromere, which became inactivated about 25 million years ago. The inactivation of this centromere likely released segmental duplications from recombination repression typical of centromeric regions. We hypothesize that this increased the frequency of ectopic recombination creating a hotspot of hominid inversions where dispersed GOLGA core elements now predispose this region to recurrent genomic rearrangements associated with disease.

April 21, 2020  |  

The population genetics of structural variants in grapevine domestication.

Structural variants (SVs) are a largely unexplored feature of plant genomes. Little is known about the type and size of SVs, their distribution among individuals and, especially, their population dynamics. Understanding these dynamics is critical for understanding both the contributions of SVs to phenotypes and the likelihood of identifying them as causal genetic variants in genome-wide associations. Here, we identify SVs and study their evolutionary genomics in clonally propagated grapevine cultivars and their outcrossing wild progenitors. To catalogue SVs, we assembled the highly heterozygous Chardonnay genome, for which one in seven genes is hemizygous based on SVs. Using an integrative comparison between Chardonnay and Cabernet Sauvignon genomes by whole-genome, long-read and short-read alignment, we extended SV detection to population samples. We found that strong purifying selection acts against SVs but particularly against inversion and translocation events. SVs nonetheless accrue as recessive heterozygotes in clonally propagated lineages. They also define outlier regions of genomic divergence between wild and cultivated grapevines, suggesting roles in domestication. Outlier regions include the sex-determination region and the berry colour locus, where independent large, complex inversions have driven convergent phenotypic evolution.

April 21, 2020  |  

Long-read sequence and assembly of segmental duplications.

We have developed a computational method based on polyploid phasing of long sequence reads to resolve collapsed regions of segmental duplications within genome assemblies. Segmental Duplication Assembler (SDA; https://github.com/mvollger/SDA ) constructs graphs in which paralogous sequence variants define the nodes and long-read sequences provide attraction and repulsion edges, enabling the partition and assembly of long reads corresponding to distinct paralogs. We apply it to single-molecule, real-time sequence data from three human genomes and recover 33-79 megabase pairs (Mb) of duplications in which approximately half of the loci are diverged (<99.8%) compared to the reference genome. We show that the corresponding sequence is highly accurate (>99.9%) and that the diverged sequence corresponds to copy-number-variable paralogs that are absent from the human reference genome. Our method can be applied to other complex genomes to resolve the last gene-rich gaps, improve duplicate gene annotation, and better understand copy-number-variant genetic diversity at the base-pair level.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.