July 7, 2019  |  

Whole-genome sequencing identifies emergence of a quinolone resistance mutation in a case of Stenotrophomonas maltophilia bacteremia.

Whole-genome sequences for Stenotrophomonas maltophilia serial isolates from a bacteremic patient before and after development of levofloxacin resistance were assembled de novo and differed by one single-nucleotide variant in smeT, a repressor for multidrug efflux operon smeDEF. Along with sequenced isolates from five contemporaneous cases, they displayed considerable diversity compared against all published complete genomes. Whole-genome sequencing and complete assembly can conclusively identify resistance mechanisms emerging in S. maltophilia strains during clinical therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete genome sequencing of Stenotrophomonas acidaminiphila ZAC14D2_NAIMI4_2, a multidrug-resistant strain isolated from sediments of a polluted river in Mexico, uncovers new antibiotic resistance genes and a novel class-II lasso peptide biosynthesis gene cluster.

Here, we report the first complete genome sequence of a Stenotrophomonas acidaminiphila strain, generated with PacBio RS II single-molecule real-time technology, consisting of a single circular chromosome of 4.13 Mb. We annotated mobile genetic elements and natural product biosynthesis clusters, including a novel class-II lasso peptide with a 7-residue macrolactam ring. Copyright © 2015 Vinuesa and Ochoa-Sánchez.


July 7, 2019  |  

Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria.

In recent years, the number of human infections caused by opportunistic pathogens has increased dramatically. Plant rhizospheres are one of the most typical natural reservoirs for these pathogens but they also represent a great source for beneficial microbes with potential for biotechnological applications. However, understanding the natural variation and possible differences between pathogens and beneficials is the main challenge in furthering these possibilities. The genus Stenotrophomonas contains representatives found to be associated with human and plant host.We used comparative genomics as well as transcriptomic and physiological approaches to detect significant borders between the Stenotrophomonas strains: the multi-drug resistant pathogenic S. maltophilia and the plant-associated strains S. maltophilia R551-3 and S. rhizophila DSM14405T (both are biocontrol agents). We found an overall high degree of sequence similarity between the genomes of all three strains. Despite the notable similarity in potential factors responsible for host invasion and antibiotic resistance, other factors including several crucial virulence factors and heat shock proteins were absent in the plant-associated DSM14405T. Instead, S. rhizophila DSM14405T possessed unique genes for the synthesis and transport of the plant-protective spermidine, plant cell-wall degrading enzymes, and high salinity tolerance. Moreover, the presence or absence of bacterial growth at 37°C was identified as a very simple method in differentiating between pathogenic and non-pathogenic isolates. DSM14405T is not able to grow at this human-relevant temperature, most likely in great part due to the absence of heat shock genes and perhaps also because of the up-regulation at increased temperatures of several genes involved in a suicide mechanism.While this study is important for understanding the mechanisms behind the emerging pattern of infectious diseases, it is, to our knowledge, the first of its kind to assess the risk of beneficial strains for biotechnological applications. We identified certain traits typical of pathogens such as growth at the human body temperature together with the production of heat shock proteins as opposed to a temperature-regulated suicide system that is harnessed by beneficials.


July 7, 2019  |  

Complete genome sequence of Stenotrophomonas sp. KACC 91585, an efficient bacterium for unsaturated fatty acid hydration.

Hydroxy fatty acids (HFAs) such as 10-hydroxystearic acid (10-HSA) and 10-hydroxy-12(Z)-octadecenoic acid (10-HOD), which are similar to ricinoleic acid, are important starting materials and intermediates for the industrial manufacture of many commodities. Stenotrophomonas sp. KACC 91585, which was isolated from lake sediment, is an efficient bacterium for unsaturated fatty acid hydration that produces 10-HSA and 10-HOD from oleic acid and linoleic acid, respectively, with high conversion rates. The complete genome of this strain is 4,541,729bp with 63.83% GC content and devoid of plasmids. Sets of genes involved in the fatty acid biosynthesis and modification as well as modified lipids were identified in the genome, and these genes were concerned with HFA production. This genome sequence provides molecular information and elucidation for HFA production, and will be used as an efficient biocatalyst source for the biotechnological production of HFA. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Stenotrophomonas sp. KCTC 12332, a biotechnological potential bacterium.

Hydroxy fatty acids are used in various industries due to their availability, and in particular, Stenotrophomonas sp. has been regarded as a potential candidate for biotechnological applications, including biotransformation that hydrate unsaturated fatty acids into their derivatives. Here we complete the genome sequence of Stenotrophomonas sp. KCTC 12332 which has a size of 4,541,594bp (G+C content of 63.83%) with 3790 coding DNA sequences (CDSs), 67 tRNA and 3 rRNA operons. The genome contains gene encoding oleate hydratase that can convert oleic acid into 10-hydroxyoctadecanoic acid. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements.

Copper-based antimicrobial compounds are widely used to control plant bacterial pathogens. Pathogens have adapted in response to this selective pressure. Xanthomonas citri pv. citri, a major citrus pathogen causing Asiatic citrus canker, was first reported to carry plasmid-encoded copper resistance in Argentina. This phenotype was conferred by the copLAB gene system. The emergence of resistant strains has since been reported in Réunion and Martinique. Using microsatellite-based genotyping and copLAB PCR, we demonstrated that the genetic structure of the copper-resistant strains from these three regions was made up of two distant clusters and varied for the detection of copLAB amplicons. In order to investigate this pattern more closely, we sequenced six copper-resistant X. citri pv. citri strains from Argentina, Martinique and Réunion, together with reference copper-resistant Xanthomonas and Stenotrophomonas strains using long-read sequencing technology. Genes involved in copper resistance were found to be strain dependent with the novel identification in X. citri pv. citri of copABCD and a cus heavy metal efflux resistance-nodulation-division system. The genes providing the adaptive trait were part of a mobile genetic element similar to Tn3-like transposons and included in a conjugative plasmid. This indicates the system’s great versatility. The mining of all available bacterial genomes suggested that, within the bacterial community, the spread of copper resistance associated with mobile elements and their plasmid environments was primarily restricted to the Xanthomonadaceae family.© 2017 John Wiley & Sons Ltd.


July 7, 2019  |  

Complete genome sequence of Stenotrophomonas sp. strain WZN-1, which is capable of degrading polybrominated diphenyl ethers.

Stenotrophomonas sp. strain WZN-1, isolated from an e-waste recycling area in Tianjin, China, is capable of degrading polybrominated diphenyl ethers (PBDEs). The complete genome of strain WZN-1 consists of 4,512,703 bp. This genome information will provide important information about the biodegradation pathways and mechanisms of PBDEs. Copyright © 2017 Wu et al.


July 7, 2019  |  

Bioinformatics analysis and characterization of highly efficient polyvinyl alcohol (PVA)-degrading enzymes from the novel PVA degrader Stenotrophomonas rhizophila QL-P4.

Polyvinyl alcohol (PVA) is used widely in industry, and associated environmental pollution is a serious problem. Herein, we report a novel, efficient PVA degrader, Stenotrophomonas rhizophila QL-P4, isolated from fallen leaves from virgin forest in the Qinling Mountains. The complete genome was obtained using single-molecule real-time (SMRT) technology and corrected using Illumina sequencing. Bioinformatics analysis revealed eight PVA/OVA (vinyl alcohol oligomer)-degrading genes. Of these, seven genes were predicted to be involved in the classical intracellular PVA/OVA degradation pathway, and one (BAY15_3292) was identified as a novel PVA oxidase. Five PVA/OVA-degrading enzymes were purified and characterised. Among which, BAY15_1712, a PVA dehydrogenase (PVADH), displayed high catalytic efficiency towards PVA and OVA substrate. All reported PVADHs only have PVA-degrading ability. Most importantly, we discovered a novel PVA oxidase (BAY15_3292) that exhibited highest PVA-degrading efficiency than the reported PVADHs. Further investigation indicated that BAY15_3292 plays a crucial role in PVA degradation in S. rhizophila QL-P4. Knocking out BAY15_3292 resulted in a significant decline in PVA-degrading activity in S. rhizophila QL-P4. Interestingly, we found that BAY15_3292 possesses exocrine activity, which distinguishes it from classical PVADHs. Transparent circle experiments further proved that BAY15_3292 greatly affects extracellular PVA degradation in S. rhizophila QL-P4. The exocrine characteristics of BAY15_3292 facilitate its potential application to PVA bioremediation. In addition, we report three new efficient secondary alcohol dehydrogenases (SADHs) with OVA-degrading ability in S. rhizophila QL-P4, compared with only one OVA-degrading SADH as reported previously.Importance With the widespread application of PVA in industry, PVA-related environmental pollution is an increasingly serious issue. Because PVA is difficult to degrade, it accumulates in aquatic environments and causes chronic toxicity to aquatic organisms. Biodegradation of PVA, as an economical and environment-friendly method, has attracted much interest. To date, effective and applicable PVA-degrading bacteria/enzymes have not been reported. Herein, we report a new efficient PVA degrader (S. rhizophila QL-P4) that has five PVA/OVA-degrading enzymes with high catalytic efficiency, among which BAY15_1712 is the only reported PVADH with both PVA- and OVA-degrading abilities. Importantly, we discovered a novel PVA oxidase (BAY15_3292) that is not only more efficient than other reported PVA-degrading PVADHs, but also has exocrine activity. Overall, our findings provide new insight into PVA-degrading pathways in microorganisms, and suggest S. rhizophila QL-P4 and its enzymes have potential for application to PVA bioremediation to reduce or eliminate PVA-related environmental pollution. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Complete genome sequencing and diversity analysis of lipolytic enzymes in Stenotrophomonas maltophilia OUC_Est10

[Objective] The aim of this study was to study the diversity of lipolytic enzymes in Stenotrophomonas maltophilia OUC_Est10. [Methods] Ion exchange chromatography, genome sequencing and heterologous expression were used to study the diversity of lipolytic enzymes in Stenotrophomonas maltophilia OUC_Est10. [Results] Stenotrophomonas maltophilia OUC_Est10 could secret a wide range of lipolytic enzymes (lipases and esterases) as revealed by ion exchange chromatography. The complete genome is of 4668743 bp in length, with an average GC content of 66.25%. Genome annotation indicated the presence of 33 candidate genes whose products possess the predicted lipolytic enzyme activities. Analysis of catalytic features was carried out by expressing five putative lipolytic enzyme genes, and lipolytic enzymes in OUC_Est10 had different catalytic properties. [Conclusion] We proved that Stenotrophomonas maltophilia OUC_Est10 was a good candidate to produce diverse lipolytic enzymes, with potential applications in various fields.


July 7, 2019  |  

Complete genome sequence of a copper-resistant bacterium from the citrus phyllosphere, Stenotrophomonas sp. strain LM091, obtained using long-read technology.

The Stenotrophomonas genus shows great adaptive potential including resistance to multiple antimicrobials, opportunistic pathogenicity, and production of numerous secondary metabolites. Using long-read technology, we report the sequence of a plant-associated Stenotrophomonas strain originating from the citrus phyllosphere that displays a copper resistance phenotype. Copyright © 2016 Richard et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.