Oncogenic fusion of IGH-DUX4 has recently been reported as a hallmark that defines a B-ALL subtype present in up to 7% of adolescents and young adults B-ALL. The translocation of DUX4 into IGH results in aberrant activation of DUX4 by hijacking the intronic IGH enhancer (Eµ). How IGH-DUX4 translocation interplays with IGH allelic exclusion was never been explored. We investigated this in Nalm6 B-ALL cell line, using long-read (PacBio Iso-Seq method and 10X Chromium WGS), short-read (Illumina total stranded RNA and WGS), epigenome (H3K27ac ChIP-seq, ATAC-seq) and 3-D genome (Hi-C, H3K27ac HiChIP, Capture-C).
Recent improvements in sequencing chemistry and instrument performance combine to create a new PacBio data type, Single Molecule High-Fidelity reads (HiFi reads). Increased read length and improvement in library construction enables average read lengths of 10-20 kb with average sequence identity greater than 99% from raw single molecule reads. The resulting reads have the accuracy comparable to short read NGS but with 50-100 times longer read length. Here we benchmark the performance of this data type by sequencing and genotyping the Genome in a Bottle (GIAB) HG0002 human reference sample from the National Institute of Standards and Technology (NIST). We…
With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel System, you can easily and cost effectively generate highly accurate long reads (HiFi reads, >99% single-molecule accuracy) from genes or regions of interest ranging in size from several hundred base pairs to 20 kb. Target all types of variation across relevant genomic regions, including low complexity regions like repeat expansions, promoters, and flanking regions of transposable elements.
PacBio SMRT Sequencing is fast changing the genomics space with its long reads and high consensus sequence accuracy, providing the most comprehensive view of the genome and transcriptome. In this webinar, I will talk about the various data analysis tools available in PacBio’s data analysis suite – SMRT Link – as well as 3rd party tools available. Key applications addressed in this talk are: Genome Assemblies, Structural Variant Analysis, Long Amplicon and Targeted Sequencing, Barcoding Strategies, Iso-Seq Analysis for Full-length Transcript Sequencing
In this PAG 2018 presentation, John Williams of University of Adelaide, presents research on using PacBio SMRT Sequencing to explore the genetic origins of cattle subspecies, Angus (Bos taurus taurus) and Brahman (Bos taurus indicus). He shares RNA sequencing data using the PacBio Iso-Seq method to compare transcriptomes and phase allelic expression and describes how the IsoPhase technique enables evaluation of SNPs through transcriptome mapping back to the single genome of a cross-bred individual. Using a genomic and transcriptomic approach, two high-quality genomes from a single individual and gene isoforms specific to each subspecies are being identified.