Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.


Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.


You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
October 17, 2017

ASHG PacBio Workshop: PacBio applications updates & future roadmap

In this ASHG 2017 presentation, Jonas Korlach, the CSO of PacBio shared updates on three applications featuring SMRT Sequencing on the Sequel System, highlighting structural variant detection, targeted sequencing and the Iso-Seq method of RNA sequencing. He provided details on structural variant calling using pbsv to call insertions and deletions and compared PacBio variant calling with other technologies. Korlach described how targeted sequencing can be used to interrogate repeat expansions, detect and phase minor variants and can access medically relevant but previously inaccessible gene targets. He presented research featuring the Iso-Seq method that identified isoforms, corrected previous isoform annotations and…

Read More »

October 17, 2017

ASHG PacBio Workshop: Long-read sequencing for detecting clinically relevant structural variation

In this ASHG 2017 presentation, Han Brunner of Radboud University Medical Center presented research using SMRT Sequencing to detect structural variants to uncover the genetic causes of intellectual disability. He shared that long-read sequencing enabled detection of 25,000 structural variants per genome. Brunner presented data from patient trios to identify de novo structural variant candidates and ongoing validation work to determine the causative mutations of intellectual disability.

Read More »

October 17, 2017

ASHG PacBio Workshop: Multiplatform discovery of haplotype-resolved structural variation in human genome

In this ASHG 2017 presentation, Charles Lee of The Jackson Laboratory for Genomic Medicine presented work from the Human Genome Structural Variation Consortium. He shared data from efforts to utilize multiple platforms for the comprehensive discovery of structural variations—including insertions, deletions, inversions and mobile element insertions—in individual genomes. By combining various technologies, this research identified 7 times more structural variation per person than was previously known to exist.

Read More »

October 10, 2017

Whitepaper: Structural variation in the human genome

Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.

Read More »

September 27, 2017

Webinar: Detecting structural variants in PacBio reads – tools and applications

Most of the basepairs that differ between two human genomes are in intermediate-sized structural variants (50 bp to 5 kb), which are too small to detect with array CGH but too large to reliably discover with short-read NGS. PacBio Single Molecule, Real-Time (SMRT) Sequencing fills this technology gap. SMRT Sequencing detects tens of thousands of structural variants in a human genome, approximately five times the sensitivity of short-read NGS. To discover variants using SMRT Sequencing, we have developed pbsv, which is available in version 5 of the PacBio SMRT Link software suite. The pbsv algorithm applies a sequence of stages:…

Read More »

August 29, 2017

From RNA to full-length transcripts: The PacBio Iso-Seq method for transcriptome analysis and genome annotation

A single gene may encode a surprising number of proteins, each with a distinct biological function. This is especially true in complex eukaryotes. Short- read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. The PacBio Isoform Sequencing (Iso-Seq™) method employs long reads to sequence transcript isoforms from the 5’ end to their poly-A tails, eliminating the need for transcript reconstruction and inference. These long reads result in complete, unambiguous information about alternatively spliced exons, transcriptional…

Read More »

August 9, 2017

Applying Sequel to Genomic Datasets

De novo assembly is a large part of JGI’s analysis portfolio. Repetitive DNA sequences are abundant in a wide range of organisms we sequence and pose a significant technical challenge for assembly. We are interested in long read technologies capable of spanning genomic repeats to produce better assemblies. We currently have three RS II and two Sequel PacBio machines. RS II machines are primarily used for fungal and microbial genome assembly as well as synthetic biology validation. Between microbes and fungi we produce hundreds of PacBio libraries a year and for throughput reasons the vast majority of these are >10…

Read More »

July 2, 2017

Structural variant detection with low-coverage PacBio sequencing

Structural variants (genomic differences =50 base pairs) contribute to the evolution of organisms traits and human disease. Most structural variants (SVs) are too small to detect with array comparative genomic hybridization but too large to reliably discover with short-read DNA sequencing. Recent studies in human genomes show that PacBio SMRT Sequencing sensitively detects structural variants.

Read More »

March 1, 2017

Webinar: Beginner’s guide to PacBio SMRT Sequencing data analysis

PacBio SMRT Sequencing is fast changing the genomics space with its long reads and high consensus sequence accuracy, providing the most comprehensive view of the genome and transcriptome. In this webinar, I will talk about the various data analysis tools available in PacBio’s data analysis suite – SMRT Link – as well as 3rd party tools available. Key applications addressed in this talk are: Genome Assemblies, Structural Variant Analysis, Long Amplicon and Targeted Sequencing, Barcoding Strategies, Iso-Seq Analysis for Full-length Transcript Sequencing

Read More »

January 23, 2017

Tutorial: SMRT Link overview

This tutorial provides a high-level overview of the features contained within the SMRT Link software. SMRT Link is the web-based end-to-end software workflow manager for run design and set-up on the Sequel System, Data Management, and SMRT Analysis.

Read More »

Tutorial: SMRT Link Overview

This tutorial provides a high-level overview of the features contained within the SMRT Link software. SMRT Link is the web-based end-to-end software workflow manager for run design and set-up on the Sequel System, Data Management, and SMRT Analysis.

Read More »

1 2 3 4

Subscribe for blog updates: