fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, October 28, 2021

SFAF NGS Tech Panel

The COVID-19 pandemic has brought new focus and resources to pathogen surveillance of all kinds. HiFi sequencing, which combines high accuracy, long read lengths, and single-molecule sequencing, is unique in its ability to provide comprehensive, high-resolution views of pathogens — either as isolates or as part of complex systems. Join Meredith Ashby (PacBio) and Haley Fiske (Illumina) as they discuss pathogen sequencing in the COVID era. Meredith Ashby (PacBio) – HiFi Sequencing for the COVID Era: High-Resolution Pathogen Surveillance Haley Fiske (Illumina) – Unlocking the Power of Genomics for Pathogen Detection and Surveillance

Read More »

Thursday, October 28, 2021

HiFiViral: A Novel Method for Surveillance of SARS-CoV-2 that is Robust Across Sample Input Quantities and the Evolution of New Variants

The COVID-19 pandemic continues to be a major global epidemiological challenge with the ongoing emergence of new strain lineages that are more contagious, more virulent, drug-resistant, and in some cases evade vaccine-induced immunity. In response, the HiFiViral SARS-CoV-2 kit was developed as a scalable solution for the Sequel II and Sequel IIe Systems. Unlike amplicon sequencing, the HiFiViral SARS-CoV-2 kit uses tiled probes, resulting in robust genome coverage across varying viral input quantities despite the presence of new variants. The use of highly accurate long reads, or HiFi reads, enables comprehensive variant detection, including single nucleotide variants, indels, and structural…

Read More »

Thursday, October 28, 2021

Methylation Detection with PacBio HiFi Sequencing

In this talk, Dr. Aaron Wenger, describes how PacBio HiFi reads (15 kb – 25 kb, >99.9% accuracy) provide the most complete view of human genetic variation, including small variants in difficult-to-map regions and structural variants genome-wide. Further, PacBio sequencing simultaneously detects epigenetic modifications without requiring a specialized library preparation step like bisulfite conversion. This ability is commonly used to characterize epigenetic marks in bacterial genomes. Recent improvements in read length and data analysis have extended the ability to include the 5mC methylation that is present at CpG sites in human genomes. Using a deep learning model that integrates sequencing…

Read More »

Thursday, October 28, 2021

Allele-Specific, Isoform-Resolution Single-Cell RNA-Seq Analysis Using Long-Read Sequencing on Concatenated Single-Cell Molecules

In this talk, Dr. Elizabeth Tseng demonstrates a throughput increase for the scIso-Seq method by concatenating single-cell molecules, increasing yield a minimum of 6-fold per SMRT Cell 8M. She explains the bioinformatics workflow for analyzing concatenated scIso-Seq data, which begins with de-concatenation, followed by tagging of UMI and barcode information that can be processed by the isoseq3 pipeline for deduplication. Reads are then aligned against the reference genome, followed by SQANTI3 for transcript classification against a reference annotation (ex: GENCODE) which produces an isoform-level sparse matrix to be analyzed with single-cell tools such as Seurat. She also shows how to…

Read More »

Thursday, October 28, 2021

Using HiFi Reads for Improved and Accurate Haplotyping and Phasing of Pharmacogenomic Alleles

Pharmacogenomics (PGx) utilizes genomic information to assess an individual’s response to certain medications and can be used to predict adverse drug reactions or decreased efficacy. While numerous assays and genetic tests have been developed to interrogate pharmacogenes, several limitations exist, including lack of phasing information, and poor detection in complex regions with structural variants, pseudogenes, or gene conversions. In this talk, Dr. Nina Gonzaludo, describes amplicon and targeted enrichment capture SMRT Sequencing workflows that generate HiFi reads for high resolution of PGx alleles. To fully resolve CYP2D6, a highly polymorphic gene in a region with extensive homology, she discusses an…

Read More »

Wednesday, October 20, 2021

With Long Reads and Short Reads, the Possibilities are Endless – PacBio ASHG 2021 Fireside Chat

With the September 2021 closing of PacBio’s acquisition of Omniome, PacBio intends to become the first company to offer both long-read and short-read sequencing platforms. What does this mean for customers? How is PacBio leadership thinking about delivering a differentiated set of products and applications into high-growth clinical markets? In this intimate conversation with genomics leaders, Christian Henry, and Richard Shen, they share their vision for the future as a combined company.

Read More »

Thursday, September 23, 2021

Getting the Most Out of Your Breeding Program with DNA and RNA Sequencing

Understanding genome sequences and how they evolved is critical for harnessing that evolutionary process for agricultural improvement. Whether asking questions about the gain/loss of genes, the role of structural variation on phenotypic diversity, or identifying favorable alleles in exotic and wild species, DNA and RNA sequencing have proven to be extremely valuable tools for breeding programs all over the world. This panel-style webinar brings together three plant biologists to talk about their journeys into sequencing plant genomes and how these efforts have helped push plant breeding forward.

Read More »

Tuesday, September 7, 2021

Long-Read Genome Sequencing for the Molecular Understanding of Neurodevelopmental Disorders   

In this ESHG 2021 Workshop, PacBio Chief Scientific Officer Jonas Korlach, Ph.D., describes why HiFi sequencing improves the ability to detect pathogenic variants that previously went undetected with other technologies. He then turns the microphone over to Susan Hiatt, Ph.D. from HudsonAlpha Institute for Biotechnology. Dr. Hiatt discusses how she and her team used HiFi sequencing in their rare disease research to discover genomic variation missed by whole-exome or genome sequencing studies using short reads, allowing her team to uncover medical mysteries that had previously gone unexplained. 

Read More »

Tuesday, September 7, 2021

Full-Length Sequencing of CYP2D6 Locus with HiFi Reads Increasing Genotypes Accuracy 

The highly polymorphic CYP2D6 gene impacts the metabolism of 25% of the mostly prescribed drugs. Thus, accurate identification of variant CYP2D6 alleles in individuals is necessary for personalized medicine. PacBio HiFi sequencing produces long and accurate reads to identify variant regions. Here, we describe an end-to-end workflow for the characterization of full-length CYP2D6 by HiFi sequencing. 

Read More »

Tuesday, September 7, 2021

Targeting Clinically Significant Dark Regions of the Human Genome with High-Accuracy, Long-Read Sequencing

There are many clinically important genes in “dark” regions of the human genome. These regions are characterized as dark due to a paucity of NGS coverage as a result of short-read sequencing or mapping difficulties. Low NGS sequencing yield can arise in these regions due to the presence of various repeat elements or biased base composition while inaccurate mapping can result from segmental duplications. Long-read sequencing coupled with an optimized, robust enrichment method has the potential to illuminate these dark regions. 

Read More »

Tuesday, September 7, 2021

Resolving Complex Pathogenic Alleles using HiFi Long-Range Amplicon Data and a New Clustering Algorithm

Many genetic diseases are mapped to structurally complex loci. These regions contain highly similar paralogous alleles (>99% identity) that span kilobases within the human genome. Comprehensive screening for pathogenic variants is incomplete and labor intensive using short-reads or optical mapping. In contrast, long-range amplification and PacBio HiFi sequencing fully and directly resolve and phase a wide range of pathogenic variants without inference. To capitalize on the accuracy of HiFi data we designed a new amplicon analysis tool, pbAA. pbAA can rapidly deconvolve a mixture of haplotypes, enabling precise diplotyping, and disease allele classification. 

Read More »

Monday, September 6, 2021

Revealing Mechanisms of Bacterial Virulence and Adaptation with PacBio SMRT Sequencing

In this talk, speakers will describe the importance of high accuracy and long read length for generating closed bacterial assemblies. Speakers will also share examples of how hard-to-assemble domains and plasmids impact important biological traits including, pathogen virulence and anti-microbial resistance. Finally, they will provide an overview of the advantages of highly accurate long-read sequencing for outbreak tracking.

Read More »

Monday, August 23, 2021

Identifying Key Players in Host-Microbiome Interactions with High Resolution 16S Sequencing

In this talk, speakers provide an understanding of how highly accurate long-read sequencing of extended 16S amplicons enables the identification of metagenome community members at higher taxonomic resolution than short-read methods. You’ll also hear examples of how metagenome functions that impact human health can be driven by specific species or strains within a community and learn how the gut microbiome can impact drug efficacy.

Read More »

1 2 3 4 5 469

Subscribe for blog updates:

Archives

Search

Categories

Press Release

PacBio Grants Equity Incentive Award to New Employee

Friday, November 19, 2021

Stay
Current

Visit our blog »