Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.


Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.


You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
August 11, 2017

SMRT Sequencing reveals differential patterns of methylation in two O111:H- Shiga toxigenic Escherichia coli isolates from a historic hemolytic uremic syndrome outbreak in Australia

Shiga toxigenic Escherichia coli (STEC) are important food-borne pathogens and a major cause of haemorrhagic colitis and haemolytic-uremic syndrome (HUS) worldwide. In 1995 a severe HUS outbreak in Adelaide occurred. A recent genomic analysis of STEC O111:H- strains 95JB1 and 95NR1 from this outbreak found that the more virulent isolate, 95NR1, harboured two additional copies of the Shiga toxin 2 (Stx2) genes although the structure of the Stx2-converting prophages could not be fully resolved due to the fragmented assembly. In this study we have used Pacific Biosciences (PacBio) single molecule real-time (SMRT) long read sequencing to characterise the complete epigenome…

Read More »

May 11, 2017

Complete annotated genome sequences of two Shiga toxin-producing Escherichia coli strains and one atypical enteropathogenic E. coli strain, isolated from naturally colonized cattle of German origin.

Shiga toxin-producing Escherichia coli (STEC) strains are important zoonotic enteric pathogens with the main reservoir in cattle. Here, we present the genomes of two STEC strains and one atypical enteropathogenic E. coli strain from cattle origin, obtained during a longitudinal study in German cattle herds. Copyright © 2017 Geue et al.

Read More »

February 23, 2017

Draft genome sequences of five Shiga toxin-producing Escherichia coli isolates harboring the new and recently described subtilase cytotoxin allelic variant subAB2-3.

We present here the draft genome sequences of five Shiga toxin-producing Escherichia coli (STEC) strains which tested positive in a primary subAB screening. Assembly and annotation of the draft genomes revealed that all strains harbored the recently described allelic variant subAB2-3 Based on the sequence data, primers were designed to identify and differentiate this variant. Copyright © 2017 Tasara et al.

Read More »

March 21, 2016

Global phylogeography and evolutionary history of Shigella dysenteriae type 1

Together with plague, smallpox and typhus, epidemics of dysentery have been a major scourge of human populations for centuries1. A previous genomic study concluded that Shigella dysenteriae type 1 (Sd1), the epidemic dysentery bacillus, emerged and spread worldwide after the First World War, with no clear pattern of transmission2. This is not consistent with the massive cyclic dysentery epidemics reported in Europe during the eighteenth and nineteenth centuries1,3,4 and the first isolation of Sd1 in Japan in 18975. Here, we report a whole-genome analysis of 331 Sd1 isolates from around the world, collected between 1915 and 2011, providing us with…

Read More »

March 7, 2016

Multiple mechanisms responsible for strong Congo-red-binding variants of Escherichia coli O157:H7 strains.

High variability in the expression of csgD-dependent, biofilm-forming and adhesive properties is common among Shiga toxin-producing Escherichia coli. Although many strains of serotype O157:H7 form little biofilm, conversion to stronger biofilm phenotypes has been observed. In this study, we screened different strains of serotype O157:H7 for the emergence of strong Congo-red (CR) affinity/biofilm-forming properties and investigated the underlying genetic mechanisms. Two major mechanisms which conferred stronger biofilm phenotypes were identified: mutations (insertion, deletion, single nucleotide change) in rcsB region and stx-prophage excision from the mlrA site. Restoration of the native mlrA gene (due to prophage excision) resulted in strong biofilm…

Read More »

August 27, 2015

Comparative genomics and characterization of hybrid Shigatoxigenic and enterotoxigenic Escherichia coli (STEC/ETEC) strains.

Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor.The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic…

Read More »

April 3, 2015

Genome sequencing and comparative genomics provides insights on the evolutionary dynamics and pathogenic potential of different H-serotypes of Shiga toxin-producing Escherichia coli O104.

Various H-serotypes of the Shiga toxin-producing Escherichia coli (STEC) O104, including H4, H7, H21, and H¯, have been associated with sporadic cases of illness and have caused food-borne outbreaks globally. In the U.S., STEC O104:H21 caused an outbreak associated with milk in 1994. However, there is little known on the evolutionary origins of STEC O104 strains, and how genotypic diversity contributes to pathogenic potential of various O104 H-antigen serotypes isolated from different ecological niches and/or geographical regions.Two STEC O104:H21 (milk outbreak strain) and O104:H7 (cattle isolate) strains were shot-gun sequenced, and the genomes were closed. The intimin (eae) gene, involved…

Read More »

January 1, 2015

Prevalence of subtilase cytotoxin-encoding subAB variants among Shiga toxin-producing Escherichia coli strains isolated from wild ruminants and sheep differs from that of cattle and pigs and is predominated by the new allelic variant subAB2-2.

Subtilase cytotoxin (SubAB) is an AB5 toxin produced by Shiga toxin (Stx)-producing Escherichia coli (STEC) strains usually lacking the eae gene product intimin. Three allelic variants of SubAB encoding genes have been described: subAB1, located on a plasmid, subAB2-1, located on the pathogenicity island SE-PAI and subAB2-2 located in an outer membrane efflux protein (OEP) region. SubAB is becoming increasingly recognized as a toxin potentially involved in human pathogenesis. Ruminants and cattle have been identified as reservoirs of subAB-positive STEC. The presence of the three subAB allelic variants was investigated by PCR for 152 STEC strains originating from chamois, ibex,…

Read More »

August 7, 2014

Genome sequences of 228 Shiga toxin-producing Escherichia coli isolates and 12 isolates representing other diarrheagenic E. coli pathotypes.

Shiga toxin-producing Escherichia coli (STEC) are a common cause for food-borne diarrheal illness outbreaks and sporadic cases. Here, we report the availability of the draft genome sequences of 228 STEC strains representing 32 serotypes with known pulsed-field gel electrophoresis (PFGE) types and epidemiological relationships, as well as 12 strains representing other diarrheagenic E. coli pathotypes. Copyright © 2014 Trees et al.

Read More »

July 10, 2014

Draft whole-genome sequences of nine non-O157 Shiga toxin-producing Escherichia coli strains.

Shiga toxin-producing Escherichia coli (STEC) is an important food-borne pathogen. Here, we report the draft whole-genome sequences of nine STEC strains isolated from clinical cases in the United States. This is the first report of such information for STEC of serotypes O69, H11, O145:H25, O118:H16, O91:H21, O146:H21, O45:H2, O128:H2, and O121:H19. Copyright © 2014 Lindsey et al.

Read More »

February 21, 2012

Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011.

The degree to which molecular epidemiology reveals information about the sources and transmission patterns of an outbreak depends on the resolution of the technology used and the samples studied. Isolates of Escherichia coli O104:H4 from the outbreak centered in Germany in May-July 2011, and the much smaller outbreak in southwest France in June 2011, were indistinguishable by standard tests. We report a molecular epidemiological analysis using multiplatform whole-genome sequencing and analysis of multiple isolates from the German and French outbreaks. Isolates from the German outbreak showed remarkably little diversity, with only two single nucleotide polymorphisms (SNPs) found in isolates from…

Read More »

1 2

Subscribe for blog updates: