fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Whole genome DNA sequence analysis of Salmonella subspecies enterica serotype Tennessee obtained from related peanut butter foodborne outbreaks.

Establishing an association between possible food sources and clinical isolates requires discriminating the suspected pathogen from an environmental background, and distinguishing it from other closely-related foodborne pathogens. We used whole genome sequencing (WGS) to Salmonella subspecies enterica serotype Tennessee (S. Tennessee) to describe genomic diversity across the serovar as well as among and within outbreak clades of strains associated with contaminated peanut butter. We analyzed 71 isolates of S. Tennessee from disparate food, environmental, and clinical sources and 2 other closely-related Salmonella serovars as outgroups (S. Kentucky and S. Cubana), which were also shot-gun sequenced. A whole genome single nucleotide…

Read More »

Sunday, July 7, 2019

Atypical Salmonella enterica serovars in murine and human infection models: Is it time to reassess our approach to the study of salmonellosis?

Nontyphoidal Salmonella species are globally disseminated pathogens and the predominant cause of gastroenteritis. The pathogenesis of salmonellosis has been extensively studied using in vivo murine models and cell lines typically challenged with Salmonella Typhimurium. Although serovars Enteritidis and Typhimurium are responsible for the most of human infections reported to the CDC, several other serovars also contribute to clinical cases of salmonellosis. Despite their epidemiological importance, little is known about their infection phenotypes. Here, we report the virulence characteristics and genomes of 10 atypical S. enterica serovars linked to multistate foodborne outbreaks in the United States. We show that the murine…

Read More »

Sunday, July 7, 2019

Complete and closed genome sequences of 10 Salmonella enterica subsp. enterica serovar Anatum isolates from human and bovine sources.

Salmonella enterica is an important pathogen transmitted by numerous vectors. Genomic comparisons of Salmonella strains from disparate hosts have the potential to further our understanding of mechanisms underlying host specificities and virulence. Here, we present the closed genome and plasmid sequences of 10 Salmonella enterica subsp. enterica serovar Anatum isolates from bovine and human sources. Copyright © 2016 Nguyen et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Salmonella enterica subsp. enterica serovar Indiana C629, a carbapenem-resistant bacterium isolated from chicken carcass in China.

The carbapenem-resistant Salmonella enterica subsp. enterica serovar Indiana strain C629 was isolated from a chicken carcass collected from a slaughterhouse in Qingdao, China. The complete genome sequence of C629 contains a circular 4,791,723-bp chromosome and a circular 210,106-bp plasmid. Genes involved in carbapenem resistance of this bacterium were identified by whole-genome analysis. Copyright © 2016 Wang et al.

Read More »

Sunday, July 7, 2019

Distinct Salmonella enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings.

An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further…

Read More »

Sunday, July 7, 2019

Salmonella degrades the host glycocalyx leading to altered infection and glycan remodeling.

Complex glycans cover the gut epithelial surface to protect the cell from the environment. Invasive pathogens must breach the glycan layer before initiating infection. While glycan degradation is crucial for infection, this process is inadequately understood. Salmonella contains 47 glycosyl hydrolases (GHs) that may degrade the glycan. We hypothesized that keystone genes from the entire GH complement of Salmonella are required to degrade glycans to change infection. This study determined that GHs recognize the terminal monosaccharides (N-acetylneuraminic acid (Neu5Ac), galactose, mannose, and fucose) and significantly (p?

Read More »

Sunday, July 7, 2019

Complete genome sequences of 17 Canadian isolates of Salmonella enterica subsp. enterica serovar Heidelberg from human, animal, and food sources.

Salmonella enterica subsp. enterica serovar Heidelberg is a highly clonal serovar frequently associated with foodborne illness. To facilitate subtyping efforts, we report fully assembled genome sequences of 17 Canadian S Heidelberg isolates including six pairs of epidemiologically related strains. The plasmid sequences of eight isolates contain several drug resistance genes. © Crown copyright 2016.

Read More »

Sunday, July 7, 2019

Isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica Typhimurium from cats.

Carbapenem-resistant Enterobacteriaceae (CRE) are a pressing public health issue due to limited therapeutic options to treat such infections. CREs have been predominantly isolated from humans and environmental samples and they are rarely reported among companion animals. In this study we report on the isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica Typhimurium from a companion animal. Carbapenemase-producing S. enterica Typhimurium carrying blaIMP-4 was identified from a systemically unwell (index) cat and three additional cats at an animal shelter. All isolates were identical and belonged to ST19. Genome sequencing revealed the acquisition of a multidrug-resistant IncHI2 plasmid (pIMP4-SEM1) that…

Read More »

Sunday, July 7, 2019

IncHI2 plasmids are the key vectors responsible for oqxAB transmission among Salmonella species.

This study reported and analysed the complete sequences of two oqxAB-bearing IncHI2 plasmids harboured by a clinical S. Typhimurium strain and an S. Indiana strain of animal origin, respectively. Particularly, pA3T recovered from S. Indiana comprised the resistance determinants oqxAB, aac(6′)Ib-cr, fosA3 and blaCTX-M-14 Further genetic screening of 63 oqxAB-positive Salmonella spp. isolates revealed that the majority carried IncHI2 plasmids, confirming that such plasmids play a pivotal role in dissemination of oqxAB in Salmonella spp.. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

Read More »

Sunday, July 7, 2019

Complete, closed genome sequences of 10 Salmonella enterica subsp. enterica serovar Typhimurium strains isolated from human and bovine sources.

Salmonella enterica is a leading cause of enterocolitis for humans and animals. S. enterica subsp. enterica serovar Typhimurium infects a broad range of hosts. To facilitate genomic comparisons among isolates from different sources, we present the complete genome sequences of 10 S Typhimurium strains, 5 each isolated from human and bovine sources. Copyright © 2016 Nguyen et al.

Read More »

Sunday, July 7, 2019

Complete whole-genome sequence of Salmonella enterica subsp. enterica serovar Java NCTC5706.

Salmonellae are a significant cause of morbidity and mortality globally. Here, we report the first complete genome sequence for Salmonella enterica subsp. enterica serovar Java strain NCTC5706. This strain is of historical significance, having been isolated in the pre-antibiotic era and was deposited into the National Collection of Type Cultures in 1939.© Crown copyright 2016.

Read More »

Sunday, July 7, 2019

Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium.

Protection against enteric infections, also termed colonization resistance, results from mutualistic interactions of the host and its indigenous microbes. The gut microbiota of humans and mice is highly diverse and it is therefore challenging to assign specific properties to its individual members. Here, we have used a collection of murine bacterial strains and a modular design approach to create a minimal bacterial community that, once established in germ-free mice, provided colonization resistance against the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Initially, a community of 12 strains, termed Oligo-Mouse-Microbiota (Oligo-MM(12)), representing members of the major bacterial phyla in…

Read More »

Sunday, July 7, 2019

Completed genome sequences of strains from 36 serotypes of Salmonella.

We report here the completed closed genome sequences of strains representing 36 serotypes of Salmonella. These genome sequences will provide useful references for understanding the genetic variation between serotypes, particularly as references for mapping of raw reads or to create assemblies of higher quality, as well as to aid in studies of comparative genomics of Salmonella.© Crown copyright 2018.

Read More »

Sunday, July 7, 2019

Salmonella enterica serovar Enteritidis strains recovered from human clinical cases between 1949 and 1995 in the United States.

Salmonella enterica serovar Enteritidis is one of the most commonly isolated foodborne pathogens and is transmitted primarily to humans through consumption of contaminated poultry and poultry products. We are reporting completely closed genome and plasmid sequences of historical S. Enteritidis isolates recovered from humans between 1949 and 1995 in the United States.

Read More »

1 3 4 5 6

Subscribe for blog updates:

Archives

Search

Categories

Press Release

PacBio Grants Equity Incentive Award to New Employee

Friday, November 19, 2021

Stay
Current

Visit our blog »