fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

IncI1 plasmids encoding various blaCTX-Ms contributed to ceftriaxone resistance in Salmonella Enteritidis in China.

Resistance to extended spectrum ß-lactams in Salmonella, in particular serotypes such as S. Enteritidis that are frequently associated with clinical infections, is a serious public health concern. In this study, phenotypic characterization of 433 clinical S. Enteritidis strains obtained from a nationwide collection of China CDC during the period of 2005~2010 depicted an increasing trend of resistance to ceftriaxone from 2008 onwards. Seventeen (4%) of the strains were found to be resistant to ceftriaxone, 7% to ciprofloxacin and 0.7% to both ciprofloxacin and ceftriaxone. Most of the ceftriaxone-resistant S. Enteritidis strains (15/17) were genetically unrelated, and originated from Henan province.…

Read More »

Sunday, July 7, 2019

Complete genome sequences of Salmonella enterica serovar Heidelberg strains associated with a multistate food-borne illness investigation.

Next-generation sequencing is being evaluated for use with food-borne illness investigations, especially when the outbreak strains produce patterns that cannot be discriminated from non-outbreak strains using conventional procedures. Here we report complete genome assemblies of two Salmonella enterica serovar Heidelberg strains with a common pulsed-field gel electrophoresis pattern isolated during an outbreak investigation.

Read More »

Sunday, July 7, 2019

First complete genome sequence of Salmonella enterica subsp. enterica serovar Typhimurium strain ATCC 13311 (NCTC 74), a reference strain of multidrug resistance, as achieved by use of PacBio Single-Molecule Real-Time technology.

We report the first complete genomic sequence of Salmonella enterica subsp. enterica serovar Typhimurium strain ATCC 13311, the leading food-borne pathogen and a reference strain used in drug resistance studies. De novo assembly with PacBio sequencing completed its chromosome and one plasmid. They will accelerate the investigation into multidrug resistance in Salmonella Typhimurium. Copyright © 2014 Terabayashi et al.

Read More »

Sunday, July 7, 2019

Integrative analysis of Salmonellosis in Israel reveals association of Salmonella enterica serovar 9,12:l,v:- with extraintestinal infections, dissemination of endemic S. enterica serovar Typhimurium DT104 biotypes, and severe underreporting of outbreaks.

Salmonella enterica is the leading etiologic agent of bacterial food-borne outbreaks worldwide. This ubiquitous species contains more than 2,600 serovars that may differ in their host specificity, clinical manifestations, and epidemiology. To characterize salmonellosis epidemiology in Israel and to study the association of nontyphoidal Salmonella (NTS) serovars with invasive infections, 48,345 Salmonella cases reported and serotyped at the National Salmonella Reference Center between 1995 and 2012 were analyzed. A quasi-Poisson regression was used to identify irregular clusters of illness, and pulsed-field gel electrophoresis in conjunction with whole-genome sequencing was applied to molecularly characterize strains of interest. Three hundred twenty-nine human…

Read More »

Sunday, July 7, 2019

First fully closed genome sequence of Salmonella enterica subsp. enterica serovar Cubana associated with a food-borne outbreak.

Salmonella enterica subsp. enterica serovar Cubana (Salmonella serovar Cubana) is associated with human and animal disease. Here, we used third-generation, single-molecule, real-time DNA sequencing to determine the first complete genome sequence of Salmonella serovar Cubana CFSAN002050, which was isolated from fresh alfalfa sprouts during a multistate outbreak in 2012. Copyright © 2014 Hoffmann et al.

Read More »

Sunday, July 7, 2019

An evaluation of alternative methods for constructing phylogenies from whole genome sequence data: a case study with Salmonella.

Comparative genomics based on whole genome sequencing (WGS) is increasingly being applied to investigate questions within evolutionary and molecular biology, as well as questions concerning public health (e.g., pathogen outbreaks). Given the impact that conclusions derived from such analyses may have, we have evaluated the robustness of clustering individuals based on WGS data to three key factors: (1) next-generation sequencing (NGS) platform (HiSeq, MiSeq, IonTorrent, 454, and SOLiD), (2) algorithms used to construct a SNP (single nucleotide polymorphism) matrix (reference-based and reference-free), and (3) phylogenetic inference method (FastTreeMP, GARLI, and RAxML). We carried out these analyses on 194 whole genome…

Read More »

Sunday, July 7, 2019

High resolution assembly and characterization of genomes of Canadian isolates of Salmonella Enteritidis.

There is a need to characterize genomes of the foodborne pathogen, Salmonella enterica serovar Enteritidis (SE) and identify genetic information that could be ultimately deployed for differentiating strains of the organism, a need that is yet to be addressed mainly because of the high degree of clonality of the organism. In an effort to achieve the first characterization of the genomes of SE of Canadian origin, we carried out massively parallel sequencing of the nucleotide sequence of 11 SE isolates obtained from poultry production environments (n?=?9), a clam and a chicken, assembled finished genomes and investigated diversity of the SE…

Read More »

Sunday, July 7, 2019

Genome sequence of Salmonella bongori strain N268-08, a rare clinical isolate.

Salmonella bongori is a close relative of the highly virulent members of S. enterica subspecies enterica, encompassing more than 2,500 serovars, most of which cause human salmonellosis, one of the leading food-borne illnesses. S. bongori is only very rarely implicated in infections. We here present the sequence of a clinical isolate from Switzerland, S. bongori strain N268-08.

Read More »

Sunday, July 7, 2019

Combining de novo and reference-guided assembly with scaffold_builder.

Genome sequencing has become routine, however genome assembly still remains a challenge despite the computational advances in the last decade. In particular, the abundance of repeat elements in genomes makes it difficult to assemble them into a single complete sequence. Identical repeats shorter than the average read length can generally be assembled without issue. However, longer repeats such as ribosomal RNA operons cannot be accurately assembled using existing tools. The application Scaffold_builder was designed to generate scaffolds – super contigs of sequences joined by N-bases – based on the similarity to a closely related reference sequence. This is independent of…

Read More »

Sunday, July 7, 2019

Complete genome sequence of a multidrug-resistant Salmonella enterica serovar Typhimurium var. 5- strain isolated from chicken breast.

Salmonella enterica subsp. enterica serovar Typhimurium is a leading cause of salmonellosis. Here, we report a closed genome sequence, including sequences of 3 plasmids, of Salmonella serovar Typhimurium var. 5- CFSAN001921 (National Antimicrobial Resistance Monitoring System [NARMS] strain ID N30688), which was isolated from chicken breast meat and shows resistance to 10 different antimicrobials. Whole-genome and plasmid sequence analyses of this isolate will help enhance our understanding of this pathogenic multidrug-resistant serovar.

Read More »

Sunday, July 7, 2019

Prevalence and molecular characterization of mcr-1-positive Salmonella strains recovered from clinical specimens in China.

The recently discovered colistin resistance element, mcr-1, adds to the list of antimicrobial resistance genes that rapidly erode the antimicrobial efficacy of not only the commonly used antibiotics but also the last-line agents of carbapenems and colistin. This study investigated the prevalence of the mobile colistin resistance determinant mcr-1 in Salmonella strains recovered from clinical settings in China and the transmission potential of mcr-1-bearing mobile elements harbored by such isolates. The mcr-1 gene was recoverable in 1.4% of clinical isolates tested, with the majority of them belonging to Salmonella enterica serotype Typhimurium. These isolates exhibited diverse pulsed-field gel electrophoresis (PFGE)…

Read More »

Sunday, July 7, 2019

Genome sequence of the thermotolerant foodborne pathogen Salmonella enterica serovar Senftenberg ATCC 43845 and phylogenetic analysis of loci encoding increased protein quality control mechanisms.

Salmonella enterica subsp. enterica bacteria are important foodborne pathogens with major economic impact. Some isolates exhibit increased heat tolerance, a concern for food safety. Analysis of a finished-quality genome sequence of an isolate commonly used in heat resistance studies, S. enterica subsp. enterica serovar Senftenberg 775W (ATCC 43845), demonstrated an interesting observation that this strain contains not just one, but two horizontally acquired thermotolerance locus homologs. These two loci reside on a large 341.3-kbp plasmid that is similar to the well-studied IncHI2 R478 plasmid but lacks any antibiotic resistance genes found on R478 or other IncHI2 plasmids. As this historical…

Read More »

Sunday, July 7, 2019

Complete genome sequences of two Salmonella enterica subsp. enterica serovar Enteritidis strains isolated from egg products in the United States.

Egg-associated salmonellosis is an important public health problem in many countries. Here, we report the genome sequences, including plasmids, of two strains of Salmonella enterica subsp. enterica serovar Enteritidis isolated from egg products in 2012 and 2013 in the United States. This will provide more information and insight into the research about egg-associated salmonellosis. Copyright © 2017 Hu et al.

Read More »

Sunday, July 7, 2019

Genomic characterization of a large plasmid containing a bla NDM-1 gene carried on Salmonella enterica serovar Indiana C629 isolate from China.

The bla NDM-1 gene in Salmonella species is mostly reported in clinical cases, but is rarely isolated from red and white meat in China.A Salmonella Indiana (S. Indiana) isolate was cultured from a chicken carcass procured from a slaughterhouse in China. Antimicrobial susceptibility was tested against a panel of agents. Whole-genome sequencing of the isolate was carried out and data was analyzed.A large plasmid, denoted as plasmid pC629 (210,106 bp), containing a composite cassette, consisting of IS26-bla NDM-1-ble MBL -?trpF-tat-cutA-ISCR1-sul1-qacE?1-aadA2-dfrA12-intI1-IS26 was identified. The latter locus was physically linked with bla OXA-1, bla CTX-M-65, bla TEM-1-encoding genes. A mercury resistance operon merACDEPTR…

Read More »

1 2 3 4 6

Subscribe for blog updates:

Archives