Menu
July 19, 2019  |  

Comparative genomic analysis and virulence differences in closely related Salmonella enterica serotype Heidelberg isolates from humans, retail meats, and animals.

Salmonella enterica subsp. enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. Recently, an antibiotic-resistant strain of this serovar was implicated in a large 2011 multistate outbreak resulting from consumption of contaminated ground turkey that involved 136 confirmed cases, with one death. In this study, we assessed the evolutionary diversity of 44 S. Heidelberg isolates using whole-genome sequencing (WGS) generated by the 454 GS FLX (Roche) platform. The isolates, including 30 with nearly indistinguishable (one band difference) Xbal pulsed-field gel electrophoresis patterns (JF6X01.0032, JF6X01.0058), were collected from various sources between 1982 and 2011 and included nine isolates associated with the 2011 outbreak. Additionally, we determined the complete sequence for the chromosome and three plasmids from a clinical isolate associated with the 2011 outbreak using the Pacific Biosciences (PacBio) system. Using single-nucleotide polymorphism (SNP) analyses, we were able to distinguish highly clonal isolates, including strains isolated at different times in the same year. The isolates from the recent 2011 outbreak clustered together with a mean SNP variation of only 17 SNPs. The S. Heidelberg isolates carried a variety of phages, such as prophage P22, P4, lambda-like prophage Gifsy-2, and the P2-like phage which carries the sopE1 gene, virulence genes including 62 pathogenicity, and 13 fimbrial markers and resistance plasmids of the incompatibility (Inc)I1, IncA/C, and IncHI2 groups. Twenty-one strains contained an IncX plasmid carrying a type IV secretion system. On the basis of the recent and historical isolates used in this study, our results demonstrated that, in addition to providing detailed genetic information for the isolates, WGS can identify SNP targets that can be utilized for differentiating highly clonal S. Heidelberg isolates.


July 19, 2019  |  

Exploring bacterial epigenomics in the next-generation sequencing era: a new approach for an emerging frontier.

Epigenetics has an important role for the success of foodborne pathogen persistence in diverse host niches. Substantial challenges exist in determining DNA methylation to situation-specific phenotypic traits. DNA modification, mediated by restriction-modification systems, functions as an immune response against antagonistic external DNA, and bacteriophage-acquired methyltransferases (MTase) and orphan MTases – those lacking the cognate restriction endonuclease – facilitate evolution of new phenotypes via gene expression modulation via DNA and RNA modifications, including methylation and phosphorothioation. Recent establishment of large-scale genome sequencing projects will result in a significant increase in genome availability that will lead to new demands for data analysis including new predictive bioinformatics approaches that can be verified with traditional scientific rigor. Sequencing technologies that detect modification coupled with mass spectrometry to discover new adducts is a powerful tactic to study bacterial epigenetics, which is poised to make novel and far-reaching discoveries that link biological significance and the bacterial epigenome. Copyright © 2014 Elsevier Ltd. All rights reserved.


July 19, 2019  |  

Genome-wide methylation patterns in Salmonella enterica subsp. enterica serovars.

The methylation of DNA bases plays an important role in numerous biological processes including development, gene expression, and DNA replication. Salmonella is an important foodborne pathogen, and methylation in Salmonella is implicated in virulence. Using single molecule real-time (SMRT) DNA-sequencing, we sequenced and assembled the complete genomes of eleven Salmonella enterica isolates from nine different serovars, and analysed the whole-genome methylation patterns of each genome. We describe 16 distinct N6-methyladenine (m6A) methylated motifs, one N4-methylcytosine (m4C) motif, and one combined m6A-m4C motif. Eight of these motifs are novel, i.e., they have not been previously described. We also identified the methyltransferases (MTases) associated with 13 of the motifs. Some motifs are conserved across all Salmonella serovars tested, while others were found only in a subset of serovars. Eight of the nine serovars contained a unique methylated motif that was not found in any other serovar (most of these motifs were part of Type I restriction modification systems), indicating the high diversity of methylation patterns present in Salmonella.


July 19, 2019  |  

Insertion sequence IS26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition.

Carbapenemase-producing Enterobacteriaceae (CPE), which are resistant to most or all known antibiotics, constitute a global threat to public health. Transposable elements are often associated with antibiotic resistance determinants, suggesting a role in the emergence of resistance. One insertion sequence, IS26, is frequently associated with resistance determinants, but its role remains unclear. We have analyzed the genomic contexts of 70 IS26 copies in several clinical and surveillance CPE isolates from the National Institutes of Health Clinical Center. We used target site duplications and their patterns as guides and found that a large fraction of plasmid reorganizations result from IS26 replicative transpositions, including replicon fusions, DNA inversions, and deletions. Replicative transposition could also be inferred for transposon Tn4401, which harbors the carbapenemase blaKPC gene. Thus, replicative transposition is important in the ongoing reorganization of plasmids carrying multidrug-resistant determinants, an observation that carries substantial clinical and epidemiological implications for understanding how such extreme drug resistance phenotypes evolve.Although IS26 is frequently reported to reside in resistance plasmids of clinical isolates, the characteristic hallmark of transposition, target site duplication (TSD), is generally not observed, raising questions about the mode of transposition for IS26. The previous observation of cointegrate formation during transposition implies that IS26 transposes via a replicative mechanism. The other possible outcome of replicative transposition is DNA inversion or deletion, when transposition occurs intramolecularly, and this would also generate a specific TSD pattern that might also serve as supporting evidence for the transposition mechanism. The numerous examples we present here demonstrate that replicative transposition, used by many mobile elements (including IS26 and Tn4401), is prevalent in the plasmids of clinical isolates and results in significant plasmid reorganization. This study also provides a method to trace the evolution of resistance plasmids based on TSD patterns. Copyright © 2015 He et al.


July 19, 2019  |  

Biosynthesis and function of modified bases in bacteria and their viruses.

Naturally occurring modification of the canonical A, G, C, and T bases can be found in the DNA of cellular organisms and viruses from all domains of life. Bacterial viruses (bacteriophages) are a particularly rich but still underexploited source of such modified variant nucleotides. The modifications conserve the coding and base-pairing functions of DNA, but add regulatory and protective functions. In prokaryotes, modified bases appear primarily to be part of an arms race between bacteriophages (and other genomic parasites) and their hosts, although, as in eukaryotes, some modifications have been adapted to convey epigenetic information. The first half of this review catalogs the identification and diversity of DNA modifications found in bacteria and bacteriophages. What is known about the biogenesis, context, and function of these modifications are also described. The second part of the review places these DNA modifications in the context of the arms race between bacteria and bacteriophages. It focuses particularly on the defense and counter-defense strategies that turn on direct recognition of the presence of a modified base. Where modification has been shown to affect other DNA transactions, such as expression and chromosome segregation, that is summarized, with reference to recent reviews.


July 19, 2019  |  

Comparative analysis of extended-spectrum-ß-lactamase CTX-M-65-producing Salmonella enterica serovar Infantis isolates from humans, food animals, and retail chickens in the United States.

We sequenced the genomes of ten Salmonella enterica serovar Infantis containing blaCTX-M-65 isolated from chicken, cattle, and human sources collected between 2012 and 2015 in the United States through routine NARMS surveillance and product sampling programs. We also completely assembled the plasmids from four of the isolates. All isolates had a D87Y mutation in the gyrA gene and harbored between 7 and 10 resistance genes (aph (4)-Ia, aac (3)-IVa, aph(3′ )-Ic, blaCTX-M-65, fosA3, floR, dfrA14, sul1, tetA, aadA1) located in two distinct sites of a megaplasmid (~316-323kb) similar to that described in a blaCTX-M-65-positive S. Infantis isolated from a patient in Italy. High-quality single nucleotide polymorphism (hqSNP) analysis revealed that all U.S. isolates were closely related, separated by only 1 to 38 pairwise high quality SNPs, indicating a high likelihood that strains from humans, chicken, and cattle recently evolved from a common ancestor. The U.S. isolates were genetically similar to the blaCTX-M-65-positive S. Infantis isolate from Italy, with a separation of 34 to 47 SNPs. This is the first report of the blaCTX-M-65 gene and the pESI-like megaplasmid from S. Infantis in the United States, and illustrates the importance of applying a global One Health, human and animal perspective to combat antimicrobial resistance. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Complete sequences of six IncA/C plasmids of multidrug-resistant Salmonella enterica subsp. enterica serotype Newport.

Multidrug-resistant (MDR) Salmonella enterica subsp. enterica serotype Newport has been a long-standing public health concern in the United States. We present the complete sequences of six IncA/C plasmids from animal-derived MDR S. Newport ranging from 80.1 to 158.5 kb. They shared a genetic backbone with S. Newport IncA/C plasmids pSN254 and pAM04528. Copyright © 2015 Cao et al.


July 7, 2019  |  

Ceftriaxone-resistant Salmonella enterica serotype Typhimurium sequence type 313 from Kenyan patients is associated with the blaCTX-M-15 gene on a novel IncHI2 plasmid.

Multidrug-resistant bacteria pose a major challenge to the clinical management of infections in resource-poor settings. Although nontyphoidal Salmonella (NTS) bacteria cause predominantly enteric self-limiting illness in developed countries, NTS is responsible for a huge burden of life-threatening bloodstream infections in sub-Saharan Africa. Here, we characterized nine S. Typhimurium isolates from an outbreak involving patients who initially failed to respond to ceftriaxone treatment at a referral hospital in Kenya. These Salmonella enterica serotype Typhimurium isolates were resistant to ampicillin, chloramphenicol, cefuroxime, ceftriaxone, aztreonam, cefepime, sulfamethoxazole-trimethoprim, and cefpodoxime. Resistance to ß-lactams, including to ceftriaxone, was associated with carriage of a combination of blaCTX-M-15, blaOXA-1, and blaTEM-1 genes. The genes encoding resistance to heavy-metal ions were borne on the novel IncHI2 plasmid pKST313, which also carried a pair of class 1 integrons. All nine isolates formed a single clade within S. Typhimurium ST313, the major clone of an ongoing invasive NTS epidemic in the region. This emerging ceftriaxone-resistant clone may pose a major challenge in the management of invasive NTS in sub-Saharan Africa. Copyright © 2015, Kariuki et al.


July 7, 2019  |  

Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events.

The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species.


July 7, 2019  |  

Complete genome sequencing of a multidrug-resistant and human-invasive Salmonella enterica serovar Typhimurium strain of the emerging sequence type 213 genotype.

Salmonella enterica subsp. enterica serovar Typhimurium strain YU39 was isolated in 2005 in the state of Yucatán, Mexico, from a human systemic infection. The YU39 strain is representative of the multidrug-resistant emergent sequence type 213 (ST213) genotype. The YU39 complete genome is composed of a chromosome and seven plasmids. Copyright © 2015 Calva et al.


July 7, 2019  |  

Complete genome sequence of Salmonella enterica subsp. enterica serovar Agona 460004 2-1, associated with a multistate outbreak in the United States.

Within the last several years, Salmonella enterica subsp. enterica serovar Agona has been among the 20 most frequently isolated serovars in clinical cases of salmonellosis. In this report, the complete genome sequence of S. Agona strain 460004 2-1 isolated from unsweetened puffed-rice cereal during a multistate outbreak in 2008 was sequenced using single-molecule real-time DNA sequencing. Copyright © 2015 Hoffmann et al.


July 7, 2019  |  

Mutation assay using single-molecule real-time (SMRT) sequencing technology

Introduction We present here a simple, phenotype-independent mutation assay using a PacBio RSII DNA sequencer employing single-molecule real-time (SMRT) sequencing technology. Salmonella typhimurium YG7108 was treated with the alkylating agent N-ethyl-N-nitrosourea (ENU) and grown though several generations to fix the induced mutations, the DNA was extracted and the mutations were analyzed by using the SMRT DNA sequencer. Results The ENU-induced base-substitution frequency was 15.4 per Megabase pair, which is highly consistent with our previous results based on colony isolation and next-generation sequencing. The induced mutation spectrum (95% G:C???A:T, 5% A:T???G:C) is also consistent with the known ENU signature. The base-substitution frequency of the control was calculated to be less than 0.12 per Megabase pair. A current limitation of the approach is the high frequency of artifactual insertion and deletion mutations it detects. Conclusions Ultra-low frequency base-substitution mutations can be detected directly by using the SMRT DNA sequencer, and this technology provides a phenotype-independent mutation assay.


July 7, 2019  |  

Complete genome and plasmid sequences of three Canadian strains of Salmonella enterica subsp. enterica serovar Enteritidis belonging to phage types 8, 13, and 13a.

Salmonella enterica subsp. enterica serovar Enteritidis is a prominent cause of human salmonellosis frequently linked to poultry products. In Canada, S. Enteritidis phage types 8, 13, and 13a predominate among both clinical and poultry isolates. Here, we report the complete genome and plasmid sequences of poultry isolates of these three phage types. Copyright © 2015 Rehman et al.


July 7, 2019  |  

Genome sequence of Salmonella enterica subsp. enterica serovar Typhi isolate PM016/13 from untreated well water associated with a Typhoid outbreak in Pasir Mas, Kelantan, Malaysia.

Salmonella enterica subsp. enterica serovar Typhi is a human-restricted pathogen that causes typhoid fever. Even though it is a human-restricted pathogen, the bacterium is also isolated from environments such as groundwater and pond water. Here, we describe the genome sequence of the Salmonella enterica subsp. enterica serovar Typhi PM016/13 which was isolated from well water during a typhoid outbreak in Kelantan, Malaysia, in 2013. Copyright © 2015 Muhamad Harish et al.


July 7, 2019  |  

Complete genome sequence of a human-invasive Salmonella enterica Serovar Typhimurium strain of the emerging sequence type 213 harboring a multidrug resistance IncA/C plasmid and a blaCMY-2-carrying IncF plasmid.

Salmonella enterica subsp. enterica serovar Typhimurium strain 33676 was isolated in Mexico City, Mexico, from a patient with a systemic infection, and its complete genome sequence was determined using PacBio single-molecule real-time technology. Strain 33676 harbors an IncF plasmid carrying the extended-spectrum cephalosporin gene blaCMY-2 and a multidrug resistance IncA/C plasmid. Copyright © 2015 Silva et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.