Rigorous study of mitochondrial functions and cell biology in the budding yeast, Saccharomyces cerevisiae has advanced our understanding of mitochondrial genetics. This yeast is now a powerful model for population genetics, owing to large genetic diversity and highly structured populations among wild isolates. Comparative mitochondrial genomic analyses between yeast species have revealed broad evolutionary changes in genome organization and architecture. A fine-scale view of recent evolutionary changes within S. cerevisiae has not been possible due to low numbers of complete mitochondrial sequences.To address challenges of sequencing AT-rich and repetitive mitochondrial DNAs (mtDNAs), we sequenced two divergent S. cerevisiae mtDNAs using…
BAHD acyltransferases, named after the first four biochemically characterized enzymes of the group, are plant-specific enzymes that catalyze the transfer of coenzyme A-activated donors onto various acceptor molecules. They are responsible for the synthesis in plants of a myriad of secondary metabolites, some of which are beneficial for humans either as therapeutics or as specialty chemicals such as flavors and fragrances. The production of pharmaceutical, nutraceutical and commodity chemicals using engineered microbes is an alternative, green route to energy-intensive chemical syntheses that consume petroleum-based precursors. However, identification of appropriate enzymes and validation of their functional expression in heterologous hosts is…
Structural rearrangements have long been recognized as an important source of genetic variation, with implications in phenotypic diversity and disease, yet their detailed evolutionary dynamics remain elusive. Here we use long-read sequencing to generate end-to-end genome assemblies for 12 strains representing major subpopulations of the partially domesticated yeast Saccharomyces cerevisiae and its wild relative Saccharomyces paradoxus. These population-level high-quality genomes with comprehensive annotation enable precise definition of chromosomal boundaries between cores and subtelomeres and a high-resolution view of evolutionary genome dynamics. In chromosomal cores, S. paradoxus shows faster accumulation of balanced rearrangements (inversions, reciprocal translocations and transpositions), whereas S. cerevisiae…
A common challenge in metabolic engineering is rapidly identifying rate-controlling enzymes in heterologous pathways for subsequent production improvement. We demonstrate a workflow to address this challenge and apply it to improving xylose utilization in Saccharomyces cerevisiae. For eight reactions required for conversion of xylose to ethanol, we screened enzymes for functional expression in S. cerevisiae, followed by a combinatorial expression analysis to achieve pathway flux balancing and identification of limiting enzymatic activities. In the next round of strain engineering, we increased the copy number of these limiting enzymes and again tested the eight-enzyme combinatorial expression library in this new background.…
Cyberlindnera fabianii 65, Pichia kudriavzevii 129, and Saccharomyces cerevisiae 131 have been isolated from the microbiota of fermented masau fruits. C. fabianii and P. kudriavzevii especially harbor promising features for biotechnology and food applications. Here, we present the draft annotated genome sequences of these isolates. Copyright © 2017 van Rijswijck et al.
Engineered Saccharomyces cerevisiae has been used for ethanol production from xylose, the abundant sugar in lignocellulosic hydrolyzates. Development of engineered S. cerevisiae able to utilize xylose effectively is crucial for economical and sustainable production of fuels. To this end, the xylose-metabolic genes (XYL1, XYL2 and XYL3) from Scheffersomyces stipitis have been introduced into S. cerevisiae. The resulting engineered S. cerevisiae strains, however, often exhibit undesirable phenotypes such as slow xylose assimilation and xylitol accumulation. This work was undertaken to construct an improved xylose-fermenting strain by developing a synthetic isozyme system of xylose reductase (XR). The DXS strain having both wild…
The budding yeast Saccharomyces cerevisiae is a long-standing model for the three-dimensional organization of eukaryotic genomes. However, even in this well-studied model, it is unclear how homolog pairing in diploids or environmental conditions influence overall genome organization. Here, we performed high-throughput chromosome conformation capture on diverged Saccharomyces hybrid diploids to obtain the first global view of chromosome conformation in diploid yeasts. After controlling for the Rabl-like orientation using a polymer model, we observe significant homolog proximity that increases in saturated culture conditions. Surprisingly, we observe a localized increase in homologous interactions between the HAS1-TDA1 alleles specifically under galactose induction and…
The yeast Saccharomyces cerevisiae has emerged as a superior model organism. Selection of distinct laboratory strains of S. cerevisiae with unique phenotypic properties, such as superior mating or sporulation efficiencies, has facilitated advancements in research. W303 is one such laboratory strain that is closely related to the first completely sequenced yeast strain, S288C. In this work, we provide a high-quality, annotated genome sequence for W303 for utilization in comparative analyses and genome-wide studies. Approximately 9500 variations exist between S288C and W303, affecting the protein sequences of ~700 genes. A listing of the polymorphisms and divergent genes is provided for researchers…
Here, we report a draft genome sequence of Saccharomyces cerevisiae strain Kagoshima no. 2, which is used for brewing shochu, a traditional distilled spirit in Japan. The genome data will facilitate an understanding of the evolutional traits and genetic background related to the characteristic features of strain Kagoshima no. 2. Copyright © 2017 Mori et al.
The fourth EMBO-sponsored conference on Experimental Approaches to Evolution and Ecology Using Yeast and Other Model Systems (https://www.embl.de/training/events/2016/EAE16-01/), was held at the EMBL in Heidelberg, Germany, October 19-23, 2016. The conference was organized by Judith Berman (Tel Aviv University), Maitreya Dunham (University of Washington), Jun-Yi Leu (Academia Sinica), and Lars Steinmetz (EMBL Heidelberg and Stanford University). The meeting attracted ~120 researchers from 28 countries and covered a wide range of topics in the fields of genetics, evolutionary biology, and ecology with a unifying focus on yeast as a model system. Attendees enjoyed the Keith Haring inspired yeast florescence microscopy artwork…
Although single molecule sequencing is still improving, the lengths of the generated sequences are inevitably an advantage in genome assembly. Prior work that utilizes long reads to conduct genome assembly has mostly focused on correcting sequencing errors and improving contiguity of de novo assemblies.We propose a disassembling-reassembling approach for both correcting structural errors in the draft assembly and scaffolding a target assembly based on error-corrected single molecule sequences. To achieve this goal, we formulate a maximum alternating path cover problem. We prove that this problem is NP-hard, and solve it by a 2-approximation algorithm.Our experimental results show that our approach…
The genome sequences of more than 100 strains of the yeast Saccharomyces cerevisiae have been published. Unfortunately, most of these genome assemblies contain dozens to hundreds of gaps at repetitive sequences, including transposable elements, tRNAs, and subtelomeric regions, which is where novel genes generally reside. Relatively few strains have been chosen for genome sequencing based on their biofuel production potential, leaving an additional knowledge gap. Here, we describe the nearly complete genome sequence of GLBRCY22-3 (Y22-3), a strain of S. cerevisiae derived from the stress-tolerant wild strain NRRL YB-210 and subsequently engineered for xylose metabolism. After benchmarking several genome assembly…
The genomes of hybrid organisms, such as lager yeast (Saccharomyces cerevisiae × Saccharomyces eubayanus), contain orthologous genes, the functionality and effect of which may differ depending on their origin and copy number. How the parental subgenomes in lager yeast contribute to important phenotypic traits such as fermentation performance, aroma production, and stress tolerance remains poorly understood. Here, three de novo lager yeast hybrids with different ploidy levels (allodiploid, allotriploid, and allotetraploid) were generated through hybridization techniques without genetic modification. The hybrids were characterized in fermentations of both high gravity wort (15 °P) and very high gravity wort (25 °P), which were monitored for aroma…
Completion of eukaryal genomes can be difficult task with the highly repetitive sequences along the chromosomes and short read lengths of second-generation sequencing. Saccharomyces cerevisiae strain CEN.PK113-7D, widely used as a model organism and a cell factory, was selected for this study to demonstrate the superior capability of very long sequence reads for de novo genome assembly. We generated long reads using two common third-generation sequencing technologies (Oxford Nanopore Technology (ONT) and Pacific Biosciences (PacBio)) and used short reads obtained using Illumina sequencing for error correction. Assembly of the reads derived from all three technologies resulted in complete sequences for…
Saccharomyces cerevisiae strains with favorable characteristics are preferred for application in industries. However, the current ability to reprogram a yeast cell on the genome scale is limited due to the complexity of yeast ploids. In this study, a method named genome replication engineering-assisted continuous evolution (GREACE) was proved efficient in engineering S. cerevisiae with different ploids. Through iterative cycles of culture coupled with selection, GREACE could continuously improve the target traits of yeast by accumulating beneficial genetic modification in genome. The application of GREACE greatly improved the tolerance of yeast against acetic acid compared with their parent strain. This method…