July 7, 2019  |  

The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader.

Anaerobic gut fungi represent a distinct early-branching fungal phylum (Neocallimastigomycota) and reside in the rumen, hindgut, and feces of ruminant and nonruminant herbivores. The genome of an anaerobic fungal isolate, Orpinomyces sp. strain C1A, was sequenced using a combination of Illumina and PacBio single-molecule real-time (SMRT) technologies. The large genome (100.95 Mb, 16,347 genes) displayed extremely low G+C content (17.0%), large noncoding intergenic regions (73.1%), proliferation of microsatellite repeats (4.9%), and multiple gene duplications. Comparative genomic analysis identified multiple genes and pathways that are absent in Dikarya genomes but present in early-branching fungal lineages and/or nonfungal Opisthokonta. These included genes for posttranslational fucosylation, the production of specific intramembrane proteases and extracellular protease inhibitors, the formation of a complete axoneme and intraflagellar trafficking machinery, and a near-complete focal adhesion machinery. Analysis of the lignocellulolytic machinery in the C1A genome revealed an extremely rich repertoire, with evidence of horizontal gene acquisition from multiple bacterial lineages. Experimental analysis indicated that strain C1A is a remarkable biomass degrader, capable of simultaneous saccharification and fermentation of the cellulosic and hemicellulosic fractions in multiple untreated grasses and crop residues examined, with the process significantly enhanced by mild pretreatments. This capability, acquired during its separate evolutionary trajectory in the rumen, along with its resilience and invasiveness compared to prokaryotic anaerobes, renders anaerobic fungi promising agents for consolidated bioprocessing schemes in biofuels production.


July 7, 2019  |  

Complete genome sequence of Desulfovibrio desulfuricans strain G11, a model sulfate-reducing, hydrogenotrophic, and syntrophic partner organism.

Here, we report the draft genome of the Gram-negative, sulfate-reducing bacterium Desulfovibrio desulfuricans strain G11. Isolated from a rumen fluid enrichment, this culture has been a model syntrophic partner due to its metabolic flexibility. The assembly yielded a single circular chromosome of 3,414,943 bp and a 57% G+C content. Copyright © 2017 Sheik et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.